tf.keras.layers.MaxPool2D
Stay organized with collections
Save and categorize content based on your preferences.
Max pooling operation for 2D spatial data.
Inherits From: Layer
, Module
tf.keras.layers.MaxPool2D(
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs
)
Downsamples the input along its spatial dimensions (height and width)
by taking the maximum value over an input window
(of size defined by pool_size
) for each channel of the input.
The window is shifted by strides
along each dimension.
The resulting output,
when using the "valid"
padding option, has a spatial shape
(number of rows or columns) of:
output_shape = math.floor((input_shape - pool_size) / strides) + 1
(when input_shape >= pool_size
)
The resulting output shape when using the "same"
padding option is:
output_shape = math.floor((input_shape - 1) / strides) + 1
For example, for strides=(1, 1)
and padding="valid"
:
x = tf.constant([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])
x = tf.reshape(x, [1, 3, 3, 1])
max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(1, 1), padding='valid')
max_pool_2d(x)
<tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=
array([[[[5.],
[6.]],
[[8.],
[9.]]]], dtype=float32)>
For example, for strides=(2, 2)
and padding="valid"
:
x = tf.constant([[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]])
x = tf.reshape(x, [1, 3, 4, 1])
max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2), padding='valid')
max_pool_2d(x)
<tf.Tensor: shape=(1, 1, 2, 1), dtype=float32, numpy=
array([[[[6.],
[8.]]]], dtype=float32)>
Usage Example:
input_image = tf.constant([[[[1.], [1.], [2.], [4.]],
[[2.], [2.], [3.], [2.]],
[[4.], [1.], [1.], [1.]],
[[2.], [2.], [1.], [4.]]]])
output = tf.constant([[[[1], [0]],
[[0], [1]]]])
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
input_shape=(4, 4, 1)))
model.compile('adam', 'mean_squared_error')
model.predict(input_image, steps=1)
array([[[[2.],
[4.]],
[[4.],
[4.]]]], dtype=float32)
For example, for stride=(1, 1) and padding="same":
x = tf.constant([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])
x = tf.reshape(x, [1, 3, 3, 1])
max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(1, 1), padding='same')
max_pool_2d(x)
<tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=
array([[[[5.],
[6.],
[6.]],
[[8.],
[9.],
[9.]],
[[8.],
[9.],
[9.]]]], dtype=float32)>
Args |
pool_size
|
integer or tuple of 2 integers,
window size over which to take the maximum.
(2, 2) will take the max value over a 2x2 pooling window.
If only one integer is specified, the same window length
will be used for both dimensions.
|
strides
|
Integer, tuple of 2 integers, or None.
Strides values. Specifies how far the pooling window moves
for each pooling step. If None, it will default to pool_size .
|
padding
|
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, height, width) .
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json .
If you never set it, then it will be "channels_last".
|
|
- If
data_format='channels_last' :
4D tensor with shape (batch_size, rows, cols, channels) .
- If
data_format='channels_first' :
4D tensor with shape (batch_size, channels, rows, cols) .
|
Output shape |
- If
data_format='channels_last' :
4D tensor with shape (batch_size, pooled_rows, pooled_cols, channels) .
- If
data_format='channels_first' :
4D tensor with shape (batch_size, channels, pooled_rows, pooled_cols) .
|
Returns |
A tensor of rank 4 representing the maximum pooled values. See above for
output shape.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[],null,["# tf.keras.layers.MaxPool2D\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.8.0/keras/layers/pooling.py#L395-L529) |\n\nMax pooling operation for 2D spatial data.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.MaxPooling2D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.MaxPool2D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D), [`tf.compat.v1.keras.layers.MaxPooling2D`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D)\n\n\u003cbr /\u003e\n\n tf.keras.layers.MaxPool2D(\n pool_size=(2, 2),\n strides=None,\n padding='valid',\n data_format=None,\n **kwargs\n )\n\nDownsamples the input along its spatial dimensions (height and width)\nby taking the maximum value over an input window\n(of size defined by `pool_size`) for each channel of the input.\nThe window is shifted by `strides` along each dimension.\n\nThe resulting output,\nwhen using the `\"valid\"` padding option, has a spatial shape\n(number of rows or columns) of:\n`output_shape = math.floor((input_shape - pool_size) / strides) + 1`\n(when `input_shape \u003e= pool_size`)\n\nThe resulting output shape when using the `\"same\"` padding option is:\n`output_shape = math.floor((input_shape - 1) / strides) + 1`\n\nFor example, for `strides=(1, 1)` and `padding=\"valid\"`: \n\n x = tf.constant([[1., 2., 3.],\n [4., 5., 6.],\n [7., 8., 9.]])\n x = tf.reshape(x, [1, 3, 3, 1])\n max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),\n strides=(1, 1), padding='valid')\n max_pool_2d(x)\n \u003ctf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=\n array([[[[5.],\n [6.]],\n [[8.],\n [9.]]]], dtype=float32)\u003e\n\nFor example, for `strides=(2, 2)` and `padding=\"valid\"`: \n\n x = tf.constant([[1., 2., 3., 4.],\n [5., 6., 7., 8.],\n [9., 10., 11., 12.]])\n x = tf.reshape(x, [1, 3, 4, 1])\n max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),\n strides=(2, 2), padding='valid')\n max_pool_2d(x)\n \u003ctf.Tensor: shape=(1, 1, 2, 1), dtype=float32, numpy=\n array([[[[6.],\n [8.]]]], dtype=float32)\u003e\n\n#### Usage Example:\n\n input_image = tf.constant([[[[1.], [1.], [2.], [4.]],\n [[2.], [2.], [3.], [2.]],\n [[4.], [1.], [1.], [1.]],\n [[2.], [2.], [1.], [4.]]]])\n output = tf.constant([[[[1], [0]],\n [[0], [1]]]])\n model = tf.keras.models.Sequential()\n model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2),\n input_shape=(4, 4, 1)))\n model.compile('adam', 'mean_squared_error')\n model.predict(input_image, steps=1)\n array([[[[2.],\n [4.]],\n [[4.],\n [4.]]]], dtype=float32)\n\nFor example, for stride=(1, 1) and padding=\"same\": \n\n x = tf.constant([[1., 2., 3.],\n [4., 5., 6.],\n [7., 8., 9.]])\n x = tf.reshape(x, [1, 3, 3, 1])\n max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),\n strides=(1, 1), padding='same')\n max_pool_2d(x)\n \u003ctf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=\n array([[[[5.],\n [6.],\n [6.]],\n [[8.],\n [9.],\n [9.]],\n [[8.],\n [9.],\n [9.]]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `pool_size` | integer or tuple of 2 integers, window size over which to take the maximum. `(2, 2)` will take the max value over a 2x2 pooling window. If only one integer is specified, the same window length will be used for both dimensions. |\n| `strides` | Integer, tuple of 2 integers, or None. Strides values. Specifies how far the pooling window moves for each pooling step. If None, it will default to `pool_size`. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). `\"valid\"` means no padding. `\"same\"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be \"channels_last\". |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| \u003cbr /\u003e - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|---|---|\n| \u003cbr /\u003e - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor of rank 4 representing the maximum pooled values. See above for output shape. ||\n\n\u003cbr /\u003e"]]