tf.keras.optimizers.Adadelta
Stay organized with collections
Save and categorize content based on your preferences.
Optimizer that implements the Adadelta algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Adadelta(
learning_rate=0.001,
rho=0.95,
epsilon=1e-07,
name='Adadelta',
**kwargs
)
Adadelta optimization is a stochastic gradient descent method that is based on
adaptive learning rate per dimension to address two drawbacks:
- The continual decay of learning rates throughout training.
- The need for a manually selected global learning rate.
Adadelta is a more robust extension of Adagrad that adapts learning rates
based on a moving window of gradient updates, instead of accumulating all
past gradients. This way, Adadelta continues learning even when many updates
have been done. Compared to Adagrad, in the original version of Adadelta you
don't have to set an initial learning rate. In this version, the initial
learning rate can be set, as in most other Keras optimizers.
Args |
learning_rate
|
Initial value for the learning rate:
either a floating point value,
or a tf.keras.optimizers.schedules.LearningRateSchedule instance.
Defaults to 0.001.
Note that Adadelta tends to benefit from higher initial learning rate
values compared to other optimizers.
To match the exact form in the original paper, use 1.0.
|
rho
|
A Tensor or a floating point value. The decay rate.
|
epsilon
|
Small floating point value used to maintain numerical stability.
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "Adadelta" .
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm and represents
the maximum norm of each parameter;
"clipvalue" (float) clips gradient by value and represents the
maximum absolute value of each parameter.
|
Raises |
ValueError
|
in case of any invalid argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[],null,["# tf.keras.optimizers.Adadelta\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.8.0/keras/optimizer_v2/adadelta.py#L26-L147) |\n\nOptimizer that implements the Adadelta algorithm.\n\nInherits From: [`Optimizer`](../../../tf/keras/optimizers/Optimizer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.optimizers.Adadelta`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/experimental/Adadelta)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.optimizers.Adadelta`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/legacy/Adadelta)\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.Adadelta(\n learning_rate=0.001,\n rho=0.95,\n epsilon=1e-07,\n name='Adadelta',\n **kwargs\n )\n\nAdadelta optimization is a stochastic gradient descent method that is based on\nadaptive learning rate per dimension to address two drawbacks:\n\n- The continual decay of learning rates throughout training.\n- The need for a manually selected global learning rate.\n\nAdadelta is a more robust extension of Adagrad that adapts learning rates\nbased on a moving window of gradient updates, instead of accumulating all\npast gradients. This way, Adadelta continues learning even when many updates\nhave been done. Compared to Adagrad, in the original version of Adadelta you\ndon't have to set an initial learning rate. In this version, the initial\nlearning rate can be set, as in most other Keras optimizers.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `learning_rate` | Initial value for the learning rate: either a floating point value, or a [`tf.keras.optimizers.schedules.LearningRateSchedule`](../../../tf/keras/optimizers/schedules/LearningRateSchedule) instance. Defaults to 0.001. Note that `Adadelta` tends to benefit from higher initial learning rate values compared to other optimizers. To match the exact form in the original paper, use 1.0. |\n| `rho` | A `Tensor` or a floating point value. The decay rate. |\n| `epsilon` | Small floating point value used to maintain numerical stability. |\n| `name` | Optional name prefix for the operations created when applying gradients. Defaults to `\"Adadelta\"`. |\n| `**kwargs` | Keyword arguments. Allowed to be one of `\"clipnorm\"` or `\"clipvalue\"`. `\"clipnorm\"` (float) clips gradients by norm and represents the maximum norm of each parameter; `\"clipvalue\"` (float) clips gradient by value and represents the maximum absolute value of each parameter. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Reference --------- ||\n|---|---|\n| \u003cbr /\u003e - [Zeiler, 2012](http://arxiv.org/abs/1212.5701) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------|\n| `ValueError` | in case of any invalid argument. |\n\n\u003cbr /\u003e"]]