|  View source on GitHub | 
Exposes custom classes/functions to Keras deserialization internals.
tf.keras.utils.custom_object_scope(
    *args
)
Under a scope with custom_object_scope(objects_dict), Keras methods such
as tf.keras.models.load_model or tf.keras.models.model_from_config
will be able to deserialize any custom object referenced by a
saved config (e.g. a custom layer or metric).
Example:
Consider a custom regularizer my_regularizer:
layer = Dense(3, kernel_regularizer=my_regularizer)
config = layer.get_config()  # Config contains a reference to `my_regularizer`
...
# Later:
with custom_object_scope({'my_regularizer': my_regularizer}):
  layer = Dense.from_config(config)
| Args | |
|---|---|
| *args | Dictionary or dictionaries of {name: object}pairs. | 
Methods
__enter__
__enter__()
__exit__
__exit__(
    *args, **kwargs
)