tf.math.segment_mean
Stay organized with collections
Save and categorize content based on your preferences.
Computes the mean along segments of a tensor.
tf.math.segment_mean(
data, segment_ids, name=None
)
Read
the section on segmentation
for an explanation of segments.
Computes a tensor such that
\(output_i = \frac{\sum_j data_j}{N}\) where mean
is
over j
such that segment_ids[j] == i
and N
is the total number of
values summed.
If the mean is empty for a given segment ID i
, output[i] = 0
.
For example:
c = tf.constant([[1.0,2,3,4], [4, 3, 2, 1], [5,6,7,8]])
tf.segment_mean(c, tf.constant([0, 0, 1]))
# ==> [[2.5, 2.5, 2.5, 2.5],
# [5, 6, 7, 8]]
Args |
data
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , complex64 , int64 , qint8 , quint8 , qint32 , bfloat16 , uint16 , complex128 , half , uint32 , uint64 .
|
segment_ids
|
A Tensor . Must be one of the following types: int32 , int64 .
A 1-D tensor whose size is equal to the size of data 's
first dimension. Values should be sorted and can be repeated.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as data .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2022-10-27 UTC.
[null,null,["Last updated 2022-10-27 UTC."],[],[],null,["# tf.math.segment_mean\n\nComputes the mean along segments of a tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.math.segment_mean`](https://www.tensorflow.org/api_docs/python/tf/math/segment_mean), [`tf.compat.v1.segment_mean`](https://www.tensorflow.org/api_docs/python/tf/math/segment_mean)\n\n\u003cbr /\u003e\n\n tf.math.segment_mean(\n data, segment_ids, name=None\n )\n\nRead\n[the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation)\nfor an explanation of segments.\n\nComputes a tensor such that\n\\\\(output_i = \\\\frac{\\\\sum_j data_j}{N}\\\\) where `mean` is\nover `j` such that `segment_ids[j] == i` and `N` is the total number of\nvalues summed.\n\nIf the mean is empty for a given segment ID `i`, `output[i] = 0`. \n\n#### For example:\n\n c = tf.constant([[1.0,2,3,4], [4, 3, 2, 1], [5,6,7,8]])\n tf.segment_mean(c, tf.constant([0, 0, 1]))\n # ==\u003e [[2.5, 2.5, 2.5, 2.5],\n # [5, 6, 7, 8]]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `data` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. |\n| `segment_ids` | A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose size is equal to the size of `data`'s first dimension. Values should be sorted and can be repeated. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `data`. ||\n\n\u003cbr /\u003e"]]