אזהרה: API זו ברמה נמוכה יוסרה בגרסה עתידית של TensorFlow לאחר ההחלפה יציבה.

EditDistance

EditDistance המעמד הסופי הציבור

מחשב את מרחק עריכת Levenshtein (אולי מנורמל).

הקלטים הם רצפים באורך משתנה המסופקים על ידי SparseTensors (מדדים_השערה, ערכי_השערה, צורת_השערה) ו-(מדד_אמת, ערכי_אמת, צורת_אמת).

הכניסות הן:

כיתות מקוננות

מעמד ערוך מרחק.אפשרויות מאפיינים אופציונליים עבור EditDistance

שיטות ציבוריות

פלט <Float>
asOutput ()
מחזירה את הידית הסמלית של טנזור.
סטטי <T> EditDistance
ליצור ( היקף היקף, האופרנד <לונג> hypothesisIndices, האופרנד <T> hypothesisValues, האופרנד <לונג> hypothesisShape, האופרנד <לונג> truthIndices, האופרנד <T> truthValues, האופרנד <לונג> truthShape, אפשרויות ... אופציות)
שיטת מפעל ליצירת מחלקה העוטפת פעולת EditDistance חדשה.
סטטי EditDistance.Options
לנרמל (לנרמל בוליאני)
פלט <Float>
פלט ()
טנזור ציפה צפוף עם דרגה R - 1.

שיטות בירושה

שיטות ציבוריות

הציבור פלט <Float> asOutput ()

מחזירה את הידית הסמלית של טנזור.

כניסות לפעולות TensorFlow הן פלט של פעולת TensorFlow אחרת. שיטה זו משמשת לקבלת ידית סמלית המייצגת את חישוב הקלט.

סטטי הציבור EditDistance ליצור ( היקף היקף, האופרנד <לונג> hypothesisIndices, האופרנד <T> hypothesisValues, האופרנד <לונג> hypothesisShape, האופרנד <לונג> truthIndices, האופרנד <T> truthValues, האופרנד <לונג> truthShape, אפשרויות ... אופציות)

שיטת מפעל ליצירת מחלקה העוטפת פעולת EditDistance חדשה.

פרמטרים
תְחוּם ההיקף הנוכחי
מדדי השערה המדדים של ההשערה רשימת SparseTensor. זוהי מטריצת N x R int64.
השערה ערכים ערכי ההשערה רשימת SparseTensor. זהו וקטור באורך N.
השערהShape צורת רשימת ההשערות SparseTensor. זהו וקטור באורך R.
מדדי אמת המדדים של האמת רשימת SparseTensor. זוהי מטריצת M x R int64.
אמת ערכי ערכי האמת רשימת SparseTensor. זהו וקטור באורך M.
truthShape מדדי אמת, וקטור.
אפשרויות נושא ערכי תכונות אופציונליות
החזרות
  • מופע חדש של EditDistance

סטטי הציבור EditDistance.Options לנרמל (לנרמל בוליאני)

פרמטרים
לנרמל בוליאני (אם נכון, מרחקי העריכה מנורמלים לפי אורך האמת).

הפלט הוא:

הציבור פלט <Float> פלט ()

טנזור ציפה צפוף עם דרגה R - 1.

עבור הקלט לדוגמה:

// השערה מייצגת מטריצה ​​2x1 עם ערכי אורך משתנה: // (0,0) = ["a"] // (1,0) = ["b"] hypothesis_indexes = [[0, 0, 0], [1, 0, 0]] hypothesis_values ​​= ["a", "b"] hypothesis_shape = [2, 1, 1]

// האמת מייצגת מטריצה ​​2x2 עם ערכי אורך משתנה: // (0,0) = [] // (0,1) = ["a"] // (1,0) = ["b", " c"] // (1,1) = ["a"] truth_indices = [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0] ] truth_values ​​= ["a", "b", "c", "a"] truth_shape = [2, 2, 2] normalize = true

הפלט יהיה:

// הפלט הוא מטריצה ​​של 2x2 עם מרחקי עריכה מנורמלים לפי אורכי אמת. פלט = [[inf, 1.0], // (0,0): ללא אמת, (0,1): ללא השערה [0.5, 1.0]] // (1,0): תוספת, (1,1): אין השערה