tf.data.experimental.assert_cardinality
Asserts the cardinality of the input dataset.
tf.data.experimental.assert_cardinality(
expected_cardinality
)
dataset = tf.data.TFRecordDataset("examples.tfrecord")
cardinality = tf.data.experimental.cardinality(dataset)
print((cardinality == tf.data.experimental.UNKNOWN_CARDINALITY).numpy())
True
dataset = dataset.apply(tf.data.experimental.assert_cardinality(42))
print(tf.data.experimental.cardinality(dataset).numpy())
42
Args |
expected_cardinality
|
The expected cardinality of the input dataset.
|
Raises |
FailedPreconditionError
|
The assertion is checked at runtime (when iterating
the dataset) and an error is raised if the actual and expected cardinality
differ.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-17 UTC.
[null,null,["Last updated 2023-03-17 UTC."],[],[]]