|  View source on GitHub | 
Instantiates the ConvNeXtLarge architecture.
tf.keras.applications.convnext.ConvNeXtLarge(
    model_name='convnext_large',
    include_top=True,
    include_preprocessing=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'
)
| References | |
|---|---|
| 
 | 
For image classification use cases, see this page for detailed examples. For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
The base, large, and xlarge models were first pre-trained on the
ImageNet-21k dataset and then fine-tuned on the ImageNet-1k dataset. The
pre-trained parameters of the models were assembled from the
official repository. To get a
sense of how these parameters were converted to Keras compatible parameters,
please refer to
this repository.
When calling the summary() method after instantiating a ConvNeXt model,
prefer setting the expand_nested argument summary() to True to better
investigate the instantiated model.
| Args | |
|---|---|
| include_top | Whether to include the fully-connected layer at the top of the network. Defaults to True. | 
| weights | One of None(random initialization),"imagenet"(pre-training on ImageNet-1k), or the path to the weights
file to be loaded. Defaults to"imagenet". | 
| input_tensor | Optional Keras tensor
(i.e. output of layers.Input())
to use as image input for the model. | 
| input_shape | Optional shape tuple, only to be specified
if include_topis False.
It should have exactly 3 inputs channels. | 
| pooling | Optional pooling mode for feature extraction
when include_topisFalse. Defaults to None.
 | 
| classes | Optional number of classes to classify images
into, only to be specified if include_topis True, and
if noweightsargument is specified. Defaults to 1000 (number of
ImageNet classes). | 
| classifier_activation | A stror callable. The activation function to use
on the "top" layer. Ignored unlessinclude_top=True. Setclassifier_activation=Noneto return the logits of the "top" layer.
Defaults to"softmax".
When loading pretrained weights,classifier_activationcan only
beNoneor"softmax". | 
| Returns | |
|---|---|
| A keras.Modelinstance. |