Ragged Tensors.
This package defines ops for manipulating ragged tensors (tf.RaggedTensor),
which are tensors with non-uniform shapes.  In particular, each RaggedTensor
has one or more ragged dimensions, which are dimensions whose slices may have
different lengths.  For example, the inner (column) dimension of
rt=[[3, 1, 4, 1], [], [5, 9, 2], [6], []] is ragged, since the column slices
(rt[0, :], ..., rt[4, :]) have different lengths.  For a more detailed
description of ragged tensors, see the tf.RaggedTensor class documentation
and the Ragged Tensor Guide.
Additional ops that support RaggedTensor
Arguments that accept RaggedTensors are marked in bold.
- tf.__operators__.eq(self, other)
- tf.__operators__.ne(self, other)
- tf.bitcast(input, type, name=- None)
- tf.bitwise.bitwise_and(x, y, name=- None)
- tf.bitwise.bitwise_or(x, y, name=- None)
- tf.bitwise.bitwise_xor(x, y, name=- None)
- tf.bitwise.invert(x, name=- None)
- tf.bitwise.left_shift(x, y, name=- None)
- tf.bitwise.right_shift(x, y, name=- None)
- tf.broadcast_to(input, shape, name=- None)
- tf.cast(x, dtype, name=- None)
- tf.clip_by_value(t, clip_value_min, clip_value_max, name=- None)
- tf.concat(values, axis, name=- 'concat')
- tf.debugging.assert_equal(x, y, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_greater_equal(x, y, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_greater(x, y, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_less_equal(x, y, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_less(x, y, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_near(x, y, rtol=- None, atol=- None, message=- None, summarize=- None, name=- None)
- tf.debugging.assert_none_equal(x, y, summarize=- None, message=- None, name=- None)
- tf.debugging.check_numerics(tensor, message, name=- None)
- tf.dtypes.complex(real, imag, name=- None)
- tf.dtypes.saturate_cast(value, dtype, name=- None)
- tf.dynamic_partition(data, partitions, num_partitions, name=- None)
- tf.expand_dims(input, axis, name=- None)
- tf.gather_nd(params, indices, batch_dims=- 0, name=- None)
- tf.gather(params, indices, validate_indices=- None, axis=- None, batch_dims=- 0, name=- None)
- tf.image.adjust_brightness(image, delta)
- tf.image.adjust_gamma(image, gamma=- 1, gain=- 1)
- tf.image.convert_image_dtype(image, dtype, saturate=- False, name=- None)
- tf.image.random_brightness(image, max_delta, seed=- None)
- tf.image.resize(images, size, method=- 'bilinear', preserve_aspect_ratio=- False, antialias=- False, name=- None)
- tf.image.stateless_random_brightness(image, max_delta, seed)
- tf.io.decode_base64(input, name=- None)
- tf.io.decode_compressed(bytes, compression_type=- '', name=- None)
- tf.io.encode_base64(input, pad=- False, name=- None)
- tf.linalg.matmul(a, b, transpose_a=- False, transpose_b=- False, adjoint_a=- False, adjoint_b=- False, a_is_sparse=- False, b_is_sparse=- False, output_type=- None, name=- None)
- tf.math.abs(x, name=- None)
- tf.math.acos(x, name=- None)
- tf.math.acosh(x, name=- None)
- tf.math.add_n(inputs, name=- None)
- tf.math.add(x, y, name=- None)
- tf.math.angle(input, name=- None)
- tf.math.asin(x, name=- None)
- tf.math.asinh(x, name=- None)
- tf.math.atan2(y, x, name=- None)
- tf.math.atan(x, name=- None)
- tf.math.atanh(x, name=- None)
- tf.math.bessel_i0(x, name=- None)
- tf.math.bessel_i0e(x, name=- None)
- tf.math.bessel_i1(x, name=- None)
- tf.math.bessel_i1e(x, name=- None)
- tf.math.ceil(x, name=- None)
- tf.math.conj(x, name=- None)
- tf.math.cos(x, name=- None)
- tf.math.cosh(x, name=- None)
- tf.math.cumsum(x, axis=- 0, exclusive=- False, reverse=- False, name=- None)
- tf.math.digamma(x, name=- None)
- tf.math.divide_no_nan(x, y, name=- None)
- tf.math.divide(x, y, name=- None)
- tf.math.equal(x, y, name=- None)
- tf.math.erf(x, name=- None)
- tf.math.erfc(x, name=- None)
- tf.math.erfcinv(x, name=- None)
- tf.math.erfinv(x, name=- None)
- tf.math.exp(x, name=- None)
- tf.math.expm1(x, name=- None)
- tf.math.floor(x, name=- None)
- tf.math.floordiv(x, y, name=- None)
- tf.math.floormod(x, y, name=- None)
- tf.math.greater_equal(x, y, name=- None)
- tf.math.greater(x, y, name=- None)
- tf.math.imag(input, name=- None)
- tf.math.is_finite(x, name=- None)
- tf.math.is_inf(x, name=- None)
- tf.math.is_nan(x, name=- None)
- tf.math.less_equal(x, y, name=- None)
- tf.math.less(x, y, name=- None)
- tf.math.lgamma(x, name=- None)
- tf.math.log1p(x, name=- None)
- tf.math.log_sigmoid(x, name=- None)
- tf.math.log(x, name=- None)
- tf.math.logical_and(x, y, name=- None)
- tf.math.logical_not(x, name=- None)
- tf.math.logical_or(x, y, name=- None)
- tf.math.logical_xor(x, y, name=- 'LogicalXor')
- tf.math.maximum(x, y, name=- None)
- tf.math.minimum(x, y, name=- None)
- tf.math.multiply_no_nan(x, y, name=- None)
- tf.math.multiply(x, y, name=- None)
- tf.math.ndtri(x, name=- None)
- tf.math.negative(x, name=- None)
- tf.math.nextafter(x1, x2, name=- None)
- tf.math.not_equal(x, y, name=- None)
- tf.math.pow(x, y, name=- None)
- tf.math.real(input, name=- None)
- tf.math.reciprocal_no_nan(x, name=- None)
- tf.math.reciprocal(x, name=- None)
- tf.math.reduce_all(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_any(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_max(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_mean(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_min(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_prod(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_std(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_sum(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.reduce_variance(input_tensor, axis=- None, keepdims=- False, name=- None)
- tf.math.rint(x, name=- None)
- tf.math.round(x, name=- None)
- tf.math.rsqrt(x, name=- None)
- tf.math.scalar_mul(scalar, x, name=- None)
- tf.math.sigmoid(x, name=- None)
- tf.math.sign(x, name=- None)
- tf.math.sin(x, name=- None)
- tf.math.sinh(x, name=- None)
- tf.math.softplus(features, name=- None)
- tf.math.special.bessel_j0(x, name=- None)
- tf.math.special.bessel_j1(x, name=- None)
- tf.math.special.bessel_k0(x, name=- None)
- tf.math.special.bessel_k0e(x, name=- None)
- tf.math.special.bessel_k1(x, name=- None)
- tf.math.special.bessel_k1e(x, name=- None)
- tf.math.special.bessel_y0(x, name=- None)
- tf.math.special.bessel_y1(x, name=- None)
- tf.math.special.dawsn(x, name=- None)
- tf.math.special.expint(x, name=- None)
- tf.math.special.fresnel_cos(x, name=- None)
- tf.math.special.fresnel_sin(x, name=- None)
- tf.math.special.spence(x, name=- None)
- tf.math.sqrt(x, name=- None)
- tf.math.square(x, name=- None)
- tf.math.squared_difference(x, y, name=- None)
- tf.math.subtract(x, y, name=- None)
- tf.math.tan(x, name=- None)
- tf.math.tanh(x, name=- None)
- tf.math.truediv(x, y, name=- None)
- tf.math.unsorted_segment_max(data, segment_ids, num_segments, name=- None)
- tf.math.unsorted_segment_mean(data, segment_ids, num_segments, name=- None)
- tf.math.unsorted_segment_min(data, segment_ids, num_segments, name=- None)
- tf.math.unsorted_segment_prod(data, segment_ids, num_segments, name=- None)
- tf.math.unsorted_segment_sqrt_n(data, segment_ids, num_segments, name=- None)
- tf.math.unsorted_segment_sum(data, segment_ids, num_segments, name=- None)
- tf.math.xdivy(x, y, name=- None)
- tf.math.xlog1py(x, y, name=- None)
- tf.math.xlogy(x, y, name=- None)
- tf.math.zeta(x, q, name=- None)
- tf.nn.dropout(x, rate, noise_shape=- None, seed=- None, name=- None)
- tf.nn.elu(features, name=- None)
- tf.nn.experimental.stateless_dropout(x, rate, seed, rng_alg=- None, noise_shape=- None, name=- None)
- tf.nn.gelu(features, approximate=- False, name=- None)
- tf.nn.leaky_relu(features, alpha=- 0.2, name=- None)
- tf.nn.relu6(features, name=- None)
- tf.nn.relu(features, name=- None)
- tf.nn.selu(features, name=- None)
- tf.nn.sigmoid_cross_entropy_with_logits(labels=- None, logits=- None, name=- None)
- tf.nn.silu(features, beta=- 1.0)
- tf.nn.softmax(logits, axis=- None, name=- None)
- tf.nn.softsign(features, name=- None)
- tf.one_hot(indices, depth, on_value=- None, off_value=- None, axis=- None, dtype=- None, name=- None)
- tf.ones_like(input, dtype=- None, name=- None)
- tf.print(*inputs, **kwargs)
- tf.rank(input, name=- None)
- tf.realdiv(x, y, name=- None)
- tf.reshape(tensor, shape, name=- None)
- tf.reverse(tensor, axis, name=- None)
- tf.size(input, out_type=- tf.int32, name=- None)
- tf.split(value, num_or_size_splits, axis=- 0, num=- None, name=- 'split')
- tf.squeeze(input, axis=- None, name=- None)
- tf.stack(values, axis=- 0, name=- 'stack')
- tf.strings.as_string(input, precision=- -1, scientific=- False, shortest=- False, width=- -1, fill=- '', name=- None)
- tf.strings.format(template, inputs, placeholder=- '{}', summarize=- 3, name=- None)
- tf.strings.join(inputs, separator=- '', name=- None)
- tf.strings.length(input, unit=- 'BYTE', name=- None)
- tf.strings.lower(input, encoding=- '', name=- None)
- tf.strings.reduce_join(inputs, axis=- None, keepdims=- False, separator=- '', name=- None)
- tf.strings.regex_full_match(input, pattern, name=- None)
- tf.strings.regex_replace(input, pattern, rewrite, replace_global=- True, name=- None)
- tf.strings.strip(input, name=- None)
- tf.strings.substr(input, pos, len, unit=- 'BYTE', name=- None)
- tf.strings.to_hash_bucket_fast(input, num_buckets, name=- None)
- tf.strings.to_hash_bucket_strong(input, num_buckets, key, name=- None)
- tf.strings.to_hash_bucket(input, num_buckets, name=- None)
- tf.strings.to_number(input, out_type=- tf.float32, name=- None)
- tf.strings.unicode_script(input, name=- None)
- tf.strings.unicode_transcode(input, input_encoding, output_encoding, errors=- 'replace', replacement_char=- 65533, replace_control_characters=- False, name=- None)
- tf.strings.upper(input, encoding=- '', name=- None)
- tf.tile(input, multiples, name=- None)
- tf.truncatediv(x, y, name=- None)
- tf.truncatemod(x, y, name=- None)
- tf.where(condition, x=- None, y=- None, name=- None)
- tf.zeros_like(input, dtype=- None, name=- None)n
Functions
boolean_mask(...): Applies a boolean mask to data without flattening the mask dimensions.
constant(...): Constructs a constant RaggedTensor from a nested Python list.
cross(...): Generates feature cross from a list of tensors.
cross_hashed(...): Generates hashed feature cross from a list of tensors.
map_flat_values(...): Applies op to the flat_values of one or more RaggedTensors.
range(...): Returns a RaggedTensor containing the specified sequences of numbers.
row_splits_to_segment_ids(...): Generates the segmentation corresponding to a RaggedTensor row_splits.
segment_ids_to_row_splits(...): Generates the RaggedTensor row_splits corresponding to a segmentation.
stack(...): Stacks a list of rank-R tensors into one rank-(R+1) RaggedTensor.
stack_dynamic_partitions(...): Stacks dynamic partitions of a Tensor or RaggedTensor.