tf.keras.metrics.top_k_categorical_accuracy
Computes how often targets are in the top K
predictions.
tf.keras.metrics.top_k_categorical_accuracy(
y_true, y_pred, k=5
)
Standalone usage:
y_true = [[0, 0, 1], [0, 1, 0]]
y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k=3)
assert m.shape == (2,)
m.numpy()
array([1., 1.], dtype=float32)
Args |
y_true
|
The ground truth values.
|
y_pred
|
The prediction values.
|
k
|
(Optional) Number of top elements to look at for computing accuracy.
Defaults to 5.
|
Returns |
Top K categorical accuracy value.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]