View source on GitHub
|
Partitioner to specify a fixed number of shards along given axis.
tf.compat.v1.fixed_size_partitioner(
num_shards, axis=0
)
Migrate to TF2
This API is deprecated in TF2. In TF2, partitioner is no longer part of
the variable declaration via tf.Variable.
ParameterServer Training
handles partitioning of variables. The corresponding TF2 partitioner class of
fixed_size_partitioner is
tf.distribute.experimental.partitioners.FixedShardsPartitioner.
Check the migration guide on the differences in treatment of variables and losses between TF1 and TF2.
Before:
x = tf.compat.v1.get_variable(
"x", shape=(2,), partitioner=tf.compat.v1.fixed_size_partitioner(2)
)
After:
partitioner = (
tf.distribute.experimental.partitioners.FixedShardsPartitioner(
num_shards=2)
)
strategy = tf.distribute.experimental.ParameterServerStrategy(
cluster_resolver=cluster_resolver,
variable_partitioner=partitioner)
with strategy.scope():
x = tf.Variable([1.0, 2.0])
Description
Args | |
|---|---|
num_shards
|
int, number of shards to partition variable.
|
axis
|
int, axis to partition on.
|
Returns | |
|---|---|
A partition function usable as the partitioner argument to
variable_scope and get_variable.
|
View source on GitHub