View source on GitHub |
Scaled Exponential Linear Unit (SELU).
tf.keras.activations.selu(
x
)
The Scaled Exponential Linear Unit (SELU) activation function is defined as:
if x > 0: return scale * x
if x < 0: return scale * alpha * (exp(x) - 1)
where alpha
and scale
are pre-defined constants
(alpha=1.67326324
and scale=1.05070098
).
Basically, the SELU activation function multiplies scale
(> 1) with the
output of the tf.keras.activations.elu
function to ensure a slope larger
than one for positive inputs.
The values of alpha
and scale
are
chosen so that the mean and variance of the inputs are preserved
between two consecutive layers as long as the weights are initialized
correctly (see tf.keras.initializers.LecunNormal
initializer)
and the number of input units is "large enough"
(see reference paper for more information).
Example Usage:
num_classes = 10 # 10-class problem
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, kernel_initializer='lecun_normal',
activation='selu'))
model.add(tf.keras.layers.Dense(32, kernel_initializer='lecun_normal',
activation='selu'))
model.add(tf.keras.layers.Dense(16, kernel_initializer='lecun_normal',
activation='selu'))
model.add(tf.keras.layers.Dense(num_classes, activation='softmax'))
Args | |
---|---|
x
|
A tensor or variable to compute the activation function for. |
Returns | |
---|---|
The scaled exponential unit activation: scale * elu(x, alpha) .
|
Notes | |
---|---|
|
References | |
---|---|