View source on GitHub
|
Enable visualizations for TensorBoard.
Inherits From: Callback
tf.keras.callbacks.TensorBoard(
log_dir='logs',
histogram_freq=0,
write_graph=True,
write_images=False,
write_steps_per_second=False,
update_freq='epoch',
profile_batch=0,
embeddings_freq=0,
embeddings_metadata=None,
**kwargs
)
TensorBoard is a visualization tool provided with TensorFlow.
This callback logs events for TensorBoard, including:
- Metrics summary plots
- Training graph visualization
- Weight histograms
- Sampled profiling
When used in Model.evaluate, in addition to epoch summaries, there will be
a summary that records evaluation metrics vs Model.optimizer.iterations
written. The metric names will be prepended with evaluation, with
Model.optimizer.iterations being the step in the visualized TensorBoard.
If you have installed TensorFlow with pip, you should be able to launch TensorBoard from the command line:
tensorboard --logdir=path_to_your_logs
You can find more information about TensorBoard here.
Examples:
Basic usage:
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs")
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Then run the tensorboard command to view the visualizations.
Custom batch-level summaries in a subclassed Model:
class MyModel(tf.keras.Model):
def build(self, _):
self.dense = tf.keras.layers.Dense(10)
def call(self, x):
outputs = self.dense(x)
tf.summary.histogram('outputs', outputs)
return outputs
model = MyModel()
model.compile('sgd', 'mse')
# Make sure to set `update_freq=N` to log a batch-level summary every N
# batches. In addition to any `tf.summary` contained in `Model.call`,
# metrics added in `Model.compile` will be logged every N batches.
tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)
model.fit(x_train, y_train, callbacks=[tb_callback])
Custom batch-level summaries in a Functional API Model:
def my_summary(x):
tf.summary.histogram('x', x)
return x
inputs = tf.keras.Input(10)
x = tf.keras.layers.Dense(10)(inputs)
outputs = tf.keras.layers.Lambda(my_summary)(x)
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', 'mse')
# Make sure to set `update_freq=N` to log a batch-level summary every N
# batches. In addition to any `tf.summary` contained in `Model.call`,
# metrics added in `Model.compile` will be logged every N batches.
tb_callback = tf.keras.callbacks.TensorBoard('./logs', update_freq=1)
model.fit(x_train, y_train, callbacks=[tb_callback])
Profiling:
# Profile a single batch, e.g. the 5th batch.
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='./logs', profile_batch=5)
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
# Profile a range of batches, e.g. from 10 to 20.
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='./logs', profile_batch=(10,20))
model.fit(x_train, y_train, epochs=2, callbacks=[tensorboard_callback])
Methods
set_model
set_model(
model
)
Sets Keras model and writes graph if specified.
set_params
set_params(
params
)
View source on GitHub