View source on GitHub
|
Average pooling for temporal data.
tf.keras.layers.AveragePooling1D(
pool_size=2,
strides=None,
padding='valid',
data_format='channels_last',
**kwargs
)
Downsamples the input representation by taking the average value over the
window defined by pool_size. The window is shifted by strides. The
resulting output when using "valid" padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=1, padding='valid')avg_pool_1d(x)<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=array([[[1.5],[2.5],[3.5],[4.5]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=2, padding='valid')avg_pool_1d(x)<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=array([[[1.5],[3.5]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=1, padding='same')avg_pool_1d(x)<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.5],[2.5],[3.5],[4.5],[5.]]], dtype=float32)>
Input shape | |
|---|---|
|
Output shape | |
|---|---|
|
View source on GitHub