Global max pooling operation for 1D temporal data.
Inherits From: Layer, Module
tf.keras.layers.GlobalMaxPool1D(
data_format='channels_last', keepdims=False, **kwargs
)
Downsamples the input representation by taking the maximum value over
the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
x = tf.reshape(x, [3, 3, 1])
x
<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=
array([[[1.], [2.], [3.]],
[[4.], [5.], [6.]],
[[7.], [8.], [9.]]], dtype=float32)>
max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[3.],
[6.],
[9.], dtype=float32)>
Args |
data_format
|
A string,
one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps).
|
keepdims
|
A boolean, whether to keep the temporal dimension or not.
If keepdims is False (default), the rank of the tensor is reduced
for spatial dimensions.
If keepdims is True, the temporal dimension are retained with
length 1.
The behavior is the same as for tf.reduce_max or np.max.
|
|
- If
data_format='channels_last':
3D tensor with shape:
(batch_size, steps, features)
- If
data_format='channels_first':
3D tensor with shape:
(batch_size, features, steps)
|
Output shape |
- If
keepdims=False:
2D tensor with shape (batch_size, features).
- If
keepdims=True:
- If
data_format='channels_last':
3D tensor with shape (batch_size, 1, features)
- If
data_format='channels_first':
3D tensor with shape (batch_size, features, 1)
|