|  View source on GitHub | 
Optimization parameters for Adagrad with TPU embeddings.
tf.tpu.experimental.embedding.Adagrad(
    learning_rate: Union[float, Callable[[], float]] = 0.001,
    initial_accumulator_value: float = 0.1,
    use_gradient_accumulation: bool = True,
    clip_weight_min: Optional[float] = None,
    clip_weight_max: Optional[float] = None,
    weight_decay_factor: Optional[float] = None,
    multiply_weight_decay_factor_by_learning_rate: bool = None,
    slot_variable_creation_fn: Optional[SlotVarCreationFnType] = None,
    clipvalue: Optional[ClipValueType] = None
)
Pass this to tf.tpu.experimental.embedding.TPUEmbedding via the optimizer
argument to set the global optimizer and its parameters:
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
    ...
    optimizer=tf.tpu.experimental.embedding.Adagrad(0.1))
This can also be used in a tf.tpu.experimental.embedding.TableConfig as the
optimizer parameter to set a table specific optimizer. This will override the
optimizer and parameters for global embedding optimizer defined above:
table_one = tf.tpu.experimental.embedding.TableConfig(
    vocabulary_size=...,
    dim=...,
    optimizer=tf.tpu.experimental.embedding.Adagrad(0.2))
table_two = tf.tpu.experimental.embedding.TableConfig(
    vocabulary_size=...,
    dim=...)
feature_config = (
    tf.tpu.experimental.embedding.FeatureConfig(
        table=table_one),
    tf.tpu.experimental.embedding.FeatureConfig(
        table=table_two))
embedding = tf.tpu.experimental.embedding.TPUEmbedding(
    feature_config=feature_config,
    batch_size=...
    optimizer=tf.tpu.experimental.embedding.Adagrad(0.1))
In the above example, the first feature will be looked up in a table that has a learning rate of 0.2 while the second feature will be looked up in a table that has a learning rate of 0.1.
See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a complete description of these parameters and their impacts on the optimizer algorithm.
Methods
__eq__
__eq__(
    other: Any
) -> Union[Any, bool]
Return self==value.