Assert the condition x >= y
holds element-wise.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.compat.v1.assert_greater_equal(
x, y, data=None, summarize=None, message=None, name=None
)
Migrate to TF2
tf.compat.v1.assert_greater_equal
is compatible with eager execution and
tf.function
.
Please use tf.debugging.assert_greater_equal
instead when migrating to TF2. Apart
from data
, all arguments are supported with the same argument name.
If you want to ensure the assert statements run before the
potentially-invalid computation, please use tf.control_dependencies
,
as tf.function auto-control dependencies are insufficient for assert
statements.
Structural Mapping to Native TF2
Before:
tf.compat.v1.assert_greater_equal(
x=x, y=y, data=data, summarize=summarize,
message=message, name=name)
After:
tf.debugging.assert_greater_equal(
x=x, y=y, message=message,
summarize=summarize, name=name)
TF1 & TF2 Usage Example
TF1:
g = tf.Graph()
with g.as_default():
a = tf.compat.v1.placeholder(tf.float32, [2])
b = tf.compat.v1.placeholder(tf.float32, [2])
result = tf.compat.v1.assert_greater_equal(a, b,
message='"a >= b" does not hold for the given inputs')
with tf.compat.v1.control_dependencies([result]):
sum_node = a + b
sess = tf.compat.v1.Session(graph=g)
val = sess.run(sum_node, feed_dict={a: [1, 2], b:[1, 0]})
TF2:
a = tf.Variable([1, 2], dtype=tf.float32)
b = tf.Variable([1, 0], dtype=tf.float32)
assert_op = tf.debugging.assert_greater_equal(a, b, message=
'"a >= b" does not hold for the given inputs')
# When working with tf.control_dependencies
with tf.control_dependencies([assert_op]):
val = a + b
Description
This condition holds if for every pair of (possibly broadcast) elements
x[i]
, y[i]
, we have x[i] >= y[i]
.
If both x
and y
are empty, this is trivially satisfied.
When running in graph mode, you should add a dependency on this operation to ensure that it runs. Example of adding a dependency to an operation:
with tf.control_dependencies([tf.compat.v1.assert_greater_equal(x, y)]):
output = tf.reduce_sum(x)
Returns | |
---|---|
Op that raises InvalidArgumentError if x >= y is False.
|