tf.keras.layers.Discretization

A preprocessing layer which buckets continuous features by ranges.

Inherits From: PreprocessingLayer, Layer, Module

This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.

For an overview and full list of preprocessing layers, see the preprocessing guide.

Any tf.Tensor or tf.RaggedTensor of dimension 2 or higher.

Same as input shape.

Examples:

Bucketize float values based on provided buckets.

>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]])
>>> layer = tf.keras.layers.Discretization(bin_boundaries=[0., 1., 2.])
>>> layer(input)
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[0, 2, 3, 1],
       [1, 3, 2, 1]], dtype=int64)>

Bucketize float values based on a number of buckets to compute.

>>> input = np.array([[-1.5, 1.0, 3.4, .5], [0.0, 3.0, 1.3, 0.0]])
>>> layer = tf.keras.layers.Discretization(num_bins=4, epsilon=0.01)
>>> layer.adapt(input)
>>> layer(input)
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[0, 2, 3, 2],
       [1, 3, 3, 1]], dtype=int64)>

bin_boundaries A list of bin boundaries. The leftmost and rightmost bins will always extend to -inf and inf, so bin_boundaries=[0., 1., 2.] generates bins (-inf, 0.), [0., 1.), [1., 2.), and [2., +inf). If this option is set, adapt should not be called.
num_bins The integer number of bins to compute. If this option is set, adapt should be called to learn the bin boundaries.
epsilon Error tolerance, typically a small fraction close to zero (e.g. 0.01). Higher values of epsilon increase the quantile approximation, and hence result in more unequal buckets, but could improve performance and resource consumption.
is_adapted Whether the layer has been fit to data already.

Methods

adapt

View source

Fits the state of the preprocessing layer to the data being passed.

After calling adapt on a layer, a preprocessing layer's state will not update during training. In order to make preprocessing layers efficient in any distribution context, they are kept constant with respect to any compiled tf.Graphs that call the layer. This does not affect the layer use when adapting each layer only once, but if you adapt a layer multiple times you will need to take care to re-compile any compiled functions as follows:

  • If you are adding a preprocessing layer to a keras.Model, you need to call model.compile after each subsequent call to adapt.
  • If you are calling a preprocessing layer inside tf.data.Dataset.map, you should call map again on the input tf.data.Dataset after each adapt.
  • If you are using a tf.function directly which calls a preprocessing layer, you need to call tf.function again on your callable after each subsequent call to adapt.

tf.keras.Model example with multiple adapts:

layer = tf.keras.layers.experimental.preprocessing.Normalization(
    axis=None)
layer.adapt([0, 2])
model = tf.keras.Sequential(layer)
model.predict([0, 1, 2])
array([-1.,  0.,  1.], dtype=float32)
layer.adapt([-1, 1])
model.compile() # This is needed to re-compile model.predict!
model.predict([0, 1, 2])
array([0., 1., 2.], dtype=float32)

tf.data.Dataset example with multiple adapts:

layer = tf.keras.layers.experimental.preprocessing.Normalization(
    axis=None)
layer.adapt([0, 2])
input_ds = tf.data.Dataset.range(3)
normalized_ds = input_ds.map(layer)
list(normalized_ds.as_numpy_iterator())
[array([-1.], dtype=float32),
 array([0.], dtype=float32),
 array([1.], dtype=float32)]
layer.adapt([-1, 1])
normalized_ds = input_ds.map(layer) # Re-map over the input dataset.
list(normalized_ds.as_numpy_iterator())
[array([0.], dtype=float32),
 array([1.], dtype=float32),
 array([2.], dtype=float32)]

Arguments
data The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array.
batch_size Integer or None. Number of samples per state update. If unspecified, batch_size will default to 32. Do not specify the batch_size if your data is in the form of datasets, generators, or keras.utils.Sequence instances (since they generate batches).
steps Integer or None. Total number of steps (batches of samples) When training with input tensors such as TensorFlow data tensors, the default None is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. If x is a tf.data dataset, and 'steps' is None, the epoch will run until the input dataset is exhausted. When passing an infinitely repeating dataset, you must specify the steps argument. This argument is not supported with array inputs.

compile

View source

Configures the layer for adapt.

Arguments
run_eagerly Bool. Defaults to False. If True, this Model's logic will not be wrapped in a tf.function. Recommended to leave this as None unless your Model cannot be run inside a tf.function. steps_per_execution: Int. Defaults to 1. The number of batches to run during each tf.function call. Running multiple batches inside a single tf.function call can greatly improve performance on TPUs or small models with a large Python overhead.

reset_state

View source

Resets the statistics of the preprocessing layer.

update_state

View source

Accumulates statistics for the preprocessing layer.

Arguments
data A mini-batch of inputs to the layer.