View source on GitHub
|
Average pooling operation for spatial data.
tf.keras.layers.AveragePooling2D(
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs
)
Downsamples the input along its spatial dimensions (height and width)
by taking the average value over an input window
(of size defined by pool_size) for each channel of the input.
The window is shifted by strides along each dimension.
The resulting output when using "valid" padding option has a shape
(number of rows or columns) of:
output_shape = math.floor((input_shape - pool_size) / strides) + 1
(when input_shape >= pool_size)
The resulting output shape when using the "same" padding option is:
output_shape = math.floor((input_shape - 1) / strides) + 1
For example, for strides=(1, 1) and padding="valid":
x = tf.constant([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])x = tf.reshape(x, [1, 3, 3, 1])avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),strides=(1, 1), padding='valid')avg_pool_2d(x)<tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=array([[[[3.],[4.]],[[6.],[7.]]]], dtype=float32)>
For example, for stride=(2, 2) and padding="valid":
x = tf.constant([[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.]])x = tf.reshape(x, [1, 3, 4, 1])avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),strides=(2, 2), padding='valid')avg_pool_2d(x)<tf.Tensor: shape=(1, 1, 2, 1), dtype=float32, numpy=array([[[[3.5],[5.5]]]], dtype=float32)>
For example, for strides=(1, 1) and padding="same":
x = tf.constant([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])x = tf.reshape(x, [1, 3, 3, 1])avg_pool_2d = tf.keras.layers.AveragePooling2D(pool_size=(2, 2),strides=(1, 1), padding='same')avg_pool_2d(x)<tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=array([[[[3.],[4.],[4.5]],[[6.],[7.],[7.5]],[[7.5],[8.5],[9.]]]], dtype=float32)>
Input shape | |
|---|---|
|
Output shape | |
|---|---|
|
View source on GitHub