View source on GitHub
|
Layer that concatenates a list of inputs.
tf.keras.layers.Concatenate(
axis=-1, **kwargs
)
It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs.
x = np.arange(20).reshape(2, 2, 5)print(x)[[[ 0 1 2 3 4][ 5 6 7 8 9]][[10 11 12 13 14][15 16 17 18 19]]]y = np.arange(20, 30).reshape(2, 1, 5)print(y)[[[20 21 22 23 24]][[25 26 27 28 29]]]tf.keras.layers.Concatenate(axis=1)([x, y])<tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy=array([[[ 0, 1, 2, 3, 4],[ 5, 6, 7, 8, 9],[20, 21, 22, 23, 24]],[[10, 11, 12, 13, 14],[15, 16, 17, 18, 19],[25, 26, 27, 28, 29]]])>
x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))concatted = tf.keras.layers.Concatenate()([x1, x2])concatted.shapeTensorShape([5, 16])
Args | |
|---|---|
axis
|
Axis along which to concatenate. |
**kwargs
|
standard layer keyword arguments. |
View source on GitHub