Zero-padding layer for 2D input (e.g. picture).
Inherits From: Layer, Module
tf.keras.layers.ZeroPadding2D(
    padding=(1, 1), data_format=None, **kwargs
)
This layer can add rows and columns of zeros
at the top, bottom, left and right side of an image tensor.
Examples:
input_shape = (1, 1, 2, 2)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[[0 1]
   [2 3]]]]
y = tf.keras.layers.ZeroPadding2D(padding=1)(x)
print(y)
tf.Tensor(
  [[[[0 0]
     [0 0]
     [0 0]
     [0 0]]
    [[0 0]
     [0 1]
     [2 3]
     [0 0]]
    [[0 0]
     [0 0]
     [0 0]
     [0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
| Args | 
|---|
| padding | Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. 
If int: the same symmetric padding
is applied to height and width.If tuple of 2 ints:
interpreted as two different
symmetric padding values for height and width:
(symmetric_height_pad, symmetric_width_pad).If tuple of 2 tuples of 2 ints:
interpreted as
((top_pad, bottom_pad), (left_pad, right_pad)) | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
|  | 
|---|
| 4D tensor with shape: 
If data_formatis"channels_last":(batch_size, rows, cols, channels)If data_formatis"channels_first":(batch_size, channels, rows, cols) | 
| Output shape | 
|---|
| 4D tensor with shape: 
If data_formatis"channels_last":(batch_size, padded_rows, padded_cols, channels)If data_formatis"channels_first":(batch_size, channels, padded_rows, padded_cols) |