Instantiates a layer from a config dictionary.
tf.keras.layers.deserialize(
config, custom_objects=None
)
Args |
config
|
dict of the form {'class_name': str, 'config': dict}
|
custom_objects
|
dict mapping class names (or function names) of custom
(non-Keras) objects to class/functions
|
Returns |
Layer instance (may be Model, Sequential, Network, Layer...)
|
Example:
# Configuration of Dense(32, activation='relu')
config = {
'class_name': 'Dense',
'config': {
'activation': 'relu',
'activity_regularizer': None,
'bias_constraint': None,
'bias_initializer': {'class_name': 'Zeros', 'config': {} },
'bias_regularizer': None,
'dtype': 'float32',
'kernel_constraint': None,
'kernel_initializer': {'class_name': 'GlorotUniform',
'config': {'seed': None} },
'kernel_regularizer': None,
'name': 'dense',
'trainable': True,
'units': 32,
'use_bias': True
}
}
dense_layer = tf.keras.layers.deserialize(config)