View source on GitHub
|
Returns x + y element-wise.
tf.math.add(
x, y, name=None
)
Example usages below.
Add a scalar and a list:
x = [1, 2, 3, 4, 5]y = 1tf.add(x, y)<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6],dtype=int32)>
Note that binary + operator can be used instead:
x = tf.convert_to_tensor([1, 2, 3, 4, 5])y = tf.convert_to_tensor(1)x + y<tf.Tensor: shape=(5,), dtype=int32, numpy=array([2, 3, 4, 5, 6],dtype=int32)>
Add a tensor and a list of same shape:
x = [1, 2, 3, 4, 5]y = tf.constant([1, 2, 3, 4, 5])tf.add(x, y)<tf.Tensor: shape=(5,), dtype=int32,numpy=array([ 2, 4, 6, 8, 10], dtype=int32)>
For example,
x = tf.constant([1, 2], dtype=tf.int8)y = [2**7 + 1, 2**7 + 2]tf.add(x, y)<tf.Tensor: shape=(2,), dtype=int8, numpy=array([-126, -124], dtype=int8)>
When adding two input values of different shapes, Add follows NumPy
broadcasting rules. The two input array shapes are compared element-wise.
Starting with the trailing dimensions, the two dimensions either have to be
equal or one of them needs to be 1.
For example,
x = np.ones(6).reshape(1, 2, 1, 3)y = np.ones(6).reshape(2, 1, 3, 1)tf.add(x, y).shape.as_list()[2, 2, 3, 3]
Another example with two arrays of different dimension.
x = np.ones([1, 2, 1, 4])y = np.ones([3, 4])tf.add(x, y).shape.as_list()[1, 2, 3, 4]
The reduction version of this elementwise operation is tf.math.reduce_sum
Args | |
|---|---|
x
|
A tf.Tensor. Must be one of the following types: bfloat16, half,
float32, float64, uint8, int8, int16, int32, int64, complex64, complex128,
string.
|
y
|
A tf.Tensor. Must have the same type as x.
|
name
|
A name for the operation (optional) |
View source on GitHub