tf.raw_ops.Conv2DBackpropInput
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Computes the gradients of convolution with respect to the input.
tf.raw_ops.Conv2DBackpropInput(
    input_sizes,
    filter,
    out_backprop,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    explicit_paddings=[],
    data_format='NHWC',
    dilations=[1, 1, 1, 1],
    name=None
)
| Args | 
|---|
| input_sizes | A Tensorof typeint32.
An integer vector representing the shape ofinput,
whereinputis a 4-D[batch, height, width, channels]tensor. | 
| filter | A Tensor. Must be one of the following types:half,bfloat16,float32,float64,int32.
4-D with shape[filter_height, filter_width, in_channels, out_channels]. | 
| out_backprop | A Tensor. Must have the same type asfilter.
4-D with shape[batch, out_height, out_width, out_channels].
Gradients w.r.t. the output of the convolution. | 
| strides | A list of ints.
The stride of the sliding window for each dimension of the input
of the convolution. Must be in the same order as the dimension specified with
format. | 
| padding | A stringfrom:"SAME", "VALID", "EXPLICIT".
The type of padding algorithm to use. | 
| use_cudnn_on_gpu | An optional bool. Defaults toTrue. | 
| explicit_paddings | An optional list of ints. Defaults to[].
Ifpaddingis"EXPLICIT", the list of explicit padding amounts. For the ith
dimension, the amount of padding inserted before and after the dimension isexplicit_paddings[2 * i]andexplicit_paddings[2 * i + 1], respectively. Ifpaddingis not"EXPLICIT",explicit_paddingsmust be empty. | 
| data_format | An optional stringfrom:"NHWC", "NCHW". Defaults to"NHWC".
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
    [batch, in_height, in_width, in_channels].
Alternatively, the format could be "NCHW", the data storage order of:
    [batch, in_channels, in_height, in_width]. | 
| dilations | An optional list of ints. Defaults to[1, 1, 1, 1].
1-D tensor of length 4.  The dilation factor for each dimension ofinput. If set to k > 1, there will be k-1 skipped cells between each filter
element on that dimension. The dimension order is determined by the value ofdata_format, see above for details. Dilations in the batch and depth
dimensions must be 1. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensor. Has the same type asfilter. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2022-10-27 UTC.
  
  
  
    
      [null,null,["Last updated 2022-10-27 UTC."],[],[]]