tf.raw_ops.CropAndResizeGradBoxes
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
tf.raw_ops.CropAndResizeGradBoxes(
    grads, image, boxes, box_ind, method='bilinear', name=None
)
| Args | 
|---|
| grads | A Tensorof typefloat32.
A 4-D tensor of shape[num_boxes, crop_height, crop_width, depth]. | 
| image | A Tensor. Must be one of the following types:uint8,uint16,int8,int16,int32,int64,half,float32,float64.
A 4-D tensor of shape[batch, image_height, image_width, depth].
Bothimage_heightandimage_widthneed to be positive. | 
| boxes | A Tensorof typefloat32.
A 2-D tensor of shape[num_boxes, 4]. Thei-th row of the tensor
specifies the coordinates of a box in thebox_ind[i]image and is specified
in normalized coordinates[y1, x1, y2, x2]. A normalized coordinate value ofyis mapped to the image coordinate aty * (image_height - 1), so as the[0, 1]interval of normalized image height is mapped to[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
which case the sampled crop is an up-down flipped version of the original
image. The width dimension is treated similarly. Normalized coordinates
outside the[0, 1]range are allowed, in which case we useextrapolation_valueto extrapolate the input image values.
</td>
</tr><tr>
<td>box_ind<a id="box_ind"></a>
</td>
<td>
ATensorof typeint32.
A 1-D tensor of shape[num_boxes]with int32 values in[0, batch).
The value ofbox_ind[i]specifies the image that thei-th box refers to.
</td>
</tr><tr>
<td>method<a id="method"></a>
</td>
<td>
An optionalstringfrom:"bilinear". Defaults to"bilinear".
A string specifying the interpolation method. Only 'bilinear' is
supported for now.
</td>
</tr><tr>
<td>name` | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensorof typefloat32. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2022-10-27 UTC.
  
  
  
    
      [null,null,["Last updated 2022-10-27 UTC."],[],[]]