Transforms a vector of tf.io.SequenceExample protos (as strings) into
tf.raw_ops.ParseSequenceExampleV2(
serialized,
debug_name,
context_sparse_keys,
context_dense_keys,
context_ragged_keys,
feature_list_sparse_keys,
feature_list_dense_keys,
feature_list_ragged_keys,
feature_list_dense_missing_assumed_empty,
context_dense_defaults,
Ncontext_sparse=0,
context_sparse_types=[],
context_ragged_value_types=[],
context_ragged_split_types=[],
context_dense_shapes=[],
Nfeature_list_sparse=0,
Nfeature_list_dense=0,
feature_list_dense_types=[],
feature_list_sparse_types=[],
feature_list_ragged_value_types=[],
feature_list_ragged_split_types=[],
feature_list_dense_shapes=[],
name=None
)
typed tensors.
Args:
serialized: A Tensor
of type string
.
A scalar or vector containing binary serialized SequenceExample protos.
debug_name: A Tensor
of type string
.
A scalar or vector containing the names of the serialized protos.
May contain, for example, table key (descriptive) name for the
corresponding serialized proto. This is purely useful for debugging
purposes, and the presence of values here has no effect on the output.
May also be an empty vector if no name is available.
context_sparse_keys: A Tensor
of type string
.
The keys expected in the Examples' features associated with context_sparse
values.
context_dense_keys: A Tensor
of type string
.
The keys expected in the SequenceExamples' context features associated with
dense values.
context_ragged_keys: A Tensor
of type string
.
The keys expected in the Examples' features associated with context_ragged
values.
feature_list_sparse_keys: A Tensor
of type string
.
The keys expected in the FeatureLists associated with sparse values.
feature_list_dense_keys: A Tensor
of type string
.
The keys expected in the SequenceExamples' feature_lists associated
with lists of dense values.
feature_list_ragged_keys: A Tensor
of type string
.
The keys expected in the FeatureLists associated with ragged values.
feature_list_dense_missing_assumed_empty: A Tensor
of type bool
.
A vector corresponding 1:1 with feature_list_dense_keys, indicating which
features may be missing from the SequenceExamples. If the associated
FeatureList is missing, it is treated as empty.
context_dense_defaults: A list of Tensor
objects with types from: float32
, int64
, string
.
A list of Ncontext_dense Tensors (some may be empty).
context_dense_defaults[j] provides default values
when the SequenceExample's context map lacks context_dense_key[j].
If an empty Tensor is provided for context_dense_defaults[j],
then the Feature context_dense_keys[j] is required.
The input type is inferred from context_dense_defaults[j], even when it's
empty. If context_dense_defaults[j] is not empty, its shape must match
context_dense_shapes[j].
Ncontext_sparse: An optional int
that is >= 0
. Defaults to 0
.
context_sparse_types: An optional list of tf.DTypes
from: tf.float32, tf.int64, tf.string
. Defaults to []
.
A list of Ncontext_sparse types; the data types of data in
each context Feature given in context_sparse_keys.
Currently the ParseSingleSequenceExample supports DT_FLOAT (FloatList),
DT_INT64 (Int64List), and DT_STRING (BytesList).
context_ragged_value_types: An optional list of tf.DTypes
from: tf.float32, tf.int64, tf.string
. Defaults to []
.
RaggedTensor.value dtypes for the ragged context features.
context_ragged_split_types: An optional list of tf.DTypes
from: tf.int32, tf.int64
. Defaults to []
.
RaggedTensor.row_split dtypes for the ragged context features.
context_dense_shapes: An optional list of shapes (each a tf.TensorShape
or list of ints
). Defaults to []
.
A list of Ncontext_dense shapes; the shapes of data in
each context Feature given in context_dense_keys.
The number of elements in the Feature corresponding to context_dense_key[j]
must always equal context_dense_shapes[j].NumEntries().
The shape of context_dense_values[j] will match context_dense_shapes[j].
Nfeature_list_sparse: An optional int
that is >= 0
. Defaults to 0
.
Nfeature_list_dense: An optional int
that is >= 0
. Defaults to 0
.
feature_list_dense_types: An optional list of tf.DTypes
from: tf.float32, tf.int64, tf.string
. Defaults to []
.
feature_list_sparse_types: An optional list of tf.DTypes
from: tf.float32, tf.int64, tf.string
. Defaults to []
.
A list of Nfeature_list_sparse types; the data types
of data in each FeatureList given in feature_list_sparse_keys.
Currently the ParseSingleSequenceExample supports DT_FLOAT (FloatList),
DT_INT64 (Int64List), and DT_STRING (BytesList).
feature_list_ragged_value_types: An optional list of tf.DTypes
from: tf.float32, tf.int64, tf.string
. Defaults to []
.
RaggedTensor.value dtypes for the ragged FeatureList features.
feature_list_ragged_split_types: An optional list of tf.DTypes
from: tf.int32, tf.int64
. Defaults to []
.
RaggedTensor.row_split dtypes for the ragged FeatureList features.
feature_list_dense_shapes: An optional list of shapes (each a tf.TensorShape
or list of ints
). Defaults to []
.
A list of Nfeature_list_dense shapes; the shapes of
data in each FeatureList given in feature_list_dense_keys.
The shape of each Feature in the FeatureList corresponding to
feature_list_dense_key[j] must always equal
feature_list_dense_shapes[j].NumEntries().
name: A name for the operation (optional).
Returns:
A tuple of Tensor
objects (context_sparse_indices, context_sparse_values, context_sparse_shapes, context_dense_values, context_ragged_values, context_ragged_row_splits, feature_list_sparse_indices, feature_list_sparse_values, feature_list_sparse_shapes, feature_list_dense_values, feature_list_dense_lengths, feature_list_ragged_values, feature_list_ragged_outer_splits, feature_list_ragged_inner_splits).
context_sparse_indices: A list of `Ncontext_sparse` `Tensor` objects with type `int64`.
context_sparse_values: A list of `Tensor` objects of type `context_sparse_types`.
context_sparse_shapes: A list of `Ncontext_sparse` `Tensor` objects with type `int64`.
context_dense_values: A list of `Tensor` objects. Has the same type as `context_dense_defaults`.
context_ragged_values: A list of `Tensor` objects of type `context_ragged_value_types`.
context_ragged_row_splits: A list of `Tensor` objects of type `context_ragged_split_types`.
feature_list_sparse_indices: A list of `Nfeature_list_sparse` `Tensor` objects with type `int64`.
feature_list_sparse_values: A list of `Tensor` objects of type `feature_list_sparse_types`.
feature_list_sparse_shapes: A list of `Nfeature_list_sparse` `Tensor` objects with type `int64`.
feature_list_dense_values: A list of `Tensor` objects of type `feature_list_dense_types`.
feature_list_dense_lengths: A list of `Nfeature_list_dense` `Tensor` objects with type `int64`.
feature_list_ragged_values: A list of `Tensor` objects of type `feature_list_ragged_value_types`.
feature_list_ragged_outer_splits: A list of `Tensor` objects of type `feature_list_ragged_split_types`.
feature_list_ragged_inner_splits: A list of `Tensor` objects of type `feature_list_ragged_split_types`.