Outputs random values from the Poisson distribution(s) described by rate.
tf.raw_ops.RandomPoissonV2(
    shape,
    rate,
    seed=0,
    seed2=0,
    dtype=tf.dtypes.int64,
    name=None
)
This op uses two algorithms, depending on rate. If rate >= 10, then the algorithm by Hormann is used to acquire samples via transformation-rejection. See http://www.sciencedirect.com/science/article/pii/0167668793909974
Otherwise, Knuth's algorithm is used to acquire samples via multiplying uniform random variables. See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer Programming, Volume 2. Addison Wesley
| Args | |
|---|---|
| shape | A Tensor. Must be one of the following types:int32,int64.
1-D integer tensor. Shape of independent samples to draw from each
distribution described by the shape parameters given in rate. | 
| rate | A Tensor. Must be one of the following types:half,float32,float64,int32,int64.
A tensor in which each scalar is a "rate" parameter describing the
associated poisson distribution. | 
| seed | An optional int. Defaults to0.
If eitherseedorseed2are set to be non-zero, the random number
generator is seeded by the given seed.  Otherwise, it is seeded by a
random seed. | 
| seed2 | An optional int. Defaults to0.
A second seed to avoid seed collision. | 
| dtype | An optional tf.DTypefrom:tf.half, tf.float32, tf.float64, tf.int32, tf.int64. Defaults totf.int64. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typedtype. |