Adds sparse updates to an existing tensor according to indices.
tf.raw_ops.TensorScatterAdd(
    tensor, indices, updates, name=None
)
This operation creates a new tensor by adding sparse updates to the passed
in tensor.
This operation is very similar to tf.compat.v1.scatter_nd_add, except that the updates
are added onto an existing tensor (as opposed to a variable). If the memory
for the existing tensor cannot be re-used, a copy is made and updated.
indices is an integer tensor containing indices into a new tensor of shape
tensor.shape.  The last dimension of indices can be at most the rank of
tensor.shape:
indices.shape[-1] <= tensor.shape.rank
The last dimension of indices corresponds to indices into elements
(if indices.shape[-1] = tensor.shape.rank) or slices
(if indices.shape[-1] < tensor.shape.rank) along dimension
indices.shape[-1] of tensor.shape.  updates is a tensor with shape
indices.shape[:-1] + tensor.shape[indices.shape[-1]:]
The simplest form of tensor_scatter_add is to add individual elements to a tensor by index. For example, say we want to add 4 elements in a rank-1 tensor with 8 elements.
In Python, this scatter add operation would look like this:
    indices = tf.constant([[4], [3], [1], [7]])
    updates = tf.constant([9, 10, 11, 12])
    tensor = tf.ones([8], dtype=tf.int32)
    updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
    print(updated)
The resulting tensor would look like this:
[1, 12, 1, 11, 10, 1, 1, 13]
We can also, insert entire slices of a higher rank tensor all at once. For example, if we wanted to insert two slices in the first dimension of a rank-3 tensor with two matrices of new values.
In Python, this scatter add operation would look like this:
    indices = tf.constant([[0], [2]])
    updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
                            [7, 7, 7, 7], [8, 8, 8, 8]],
                           [[5, 5, 5, 5], [6, 6, 6, 6],
                            [7, 7, 7, 7], [8, 8, 8, 8]]])
    tensor = tf.ones([4, 4, 4],dtype=tf.int32)
    updated = tf.tensor_scatter_nd_add(tensor, indices, updates)
    print(updated)
The resulting tensor would look like this:
[[[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
 [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],
 [[6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8], [9, 9, 9, 9]],
 [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]
Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, the index is ignored.
| Returns | |
|---|---|
| A Tensor. Has the same type astensor. |