View source on GitHub
|
Applies op to the .values tensor of one or more SparseTensors.
tf.sparse.map_values(
op, *args, **kwargs
)
Replaces any SparseTensor in args or kwargs with its values
tensor (which contains the non-default values for the SparseTensor),
and then calls op. Returns a SparseTensor that is constructed
from the input SparseTensors' indices, dense_shape, and the
value returned by the op.
If the input arguments contain multiple SparseTensors, then they must have
equal indices and dense shapes.
Examples:
s = tf.sparse.from_dense([[1, 2, 0],[0, 4, 0],[1, 0, 0]])tf.sparse.to_dense(tf.sparse.map_values(tf.ones_like, s)).numpy()array([[1, 1, 0],[0, 1, 0],[1, 0, 0]], dtype=int32)
tf.sparse.to_dense(tf.sparse.map_values(tf.multiply, s, s)).numpy()array([[ 1, 4, 0],[ 0, 16, 0],[ 1, 0, 0]], dtype=int32)
tf.sparse.to_dense(tf.sparse.map_values(tf.add, s, 5)).numpy()array([[6, 7, 0],[0, 9, 0],[6, 0, 0]], dtype=int32)
Returns | |
|---|---|
A SparseTensor whose indices and dense_shape matches the indices
and dense_shape of all input SparseTensors.
|
Raises | |
|---|---|
ValueError
|
If args contains no SparseTensor, or if the indices
or dense_shapes of the input SparseTensors are not equal.
|
View source on GitHub