View source on GitHub
|
An in-process tf.data service dispatch server.
tf.data.experimental.service.DispatchServer(
config=None, start=True
)
A tf.data.experimental.service.DispatchServer coordinates a cluster of
tf.data.experimental.service.WorkerServers. When the workers start, they
register themselves with the dispatcher.
dispatcher = tf.data.experimental.service.DispatchServer()dispatcher_address = dispatcher.target.split("://")[1]worker = tf.data.experimental.service.WorkerServer(tf.data.experimental.service.WorkerConfig(dispatcher_address=dispatcher_address))dataset = tf.data.Dataset.range(10)dataset = dataset.apply(tf.data.experimental.service.distribute(processing_mode="parallel_epochs", service=dispatcher.target))print(list(dataset.as_numpy_iterator()))[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data dispatch process, use join() to block indefinitely after starting up the server.
dispatcher = tf.data.experimental.service.DispatchServer(
tf.data.experimental.service.DispatcherConfig(port=5050))
dispatcher.join()
To start a DispatchServer in fault-tolerant mode, set work_dir and
fault_tolerant_mode like below:
dispatcher = tf.data.experimental.service.DispatchServer(
tf.data.experimental.service.DispatcherConfig(
port=5050,
work_dir="gs://my-bucket/dispatcher/work_dir",
fault_tolerant_mode=True))
Args | |
|---|---|
config
|
(Optional.) A tf.data.experimental.service.DispatcherConfig
configration. If None, the dispatcher will use default
configuration values.
|
start
|
(Optional.) Boolean, indicating whether to start the server after creating it. Defaults to True. |
Methods
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated dispatch process.
dispatcher = tf.data.experimental.service.DispatchServer(
tf.data.experimental.service.DispatcherConfig(port=5050))
dispatcher.join()
| Raises | |
|---|---|
tf.errors.OpError
|
Or one of its subclasses if an error occurs while joining the server. |
start
start()
Starts this server.
dispatcher = tf.data.experimental.service.DispatchServer(start=False)dispatcher.start()
| Raises | |
|---|---|
tf.errors.OpError
|
Or one of its subclasses if an error occurs while starting the server. |
View source on GitHub