|  View source on GitHub | 
Computes the elementwise value of a polynomial.
tf.math.polyval(
    coeffs, x, name=None
)
If x is a tensor and coeffs is a list n + 1 tensors,
this function returns the value of the n-th order polynomial
p(x) = coeffs[n-1] + coeffs[n-2] * x + ...  + coeffs[0] * x**(n-1)
evaluated using Horner's method, i.e.
p(x) = coeffs[n-1] + x * (coeffs[n-2] + ... + x * (coeffs[1] + x * coeffs[0]))
Usage Example:
coefficients = [1.0, 2.5, -4.2]x = 5.0y = tf.math.polyval(coefficients, x)y<tf.Tensor: shape=(), dtype=float32, numpy=33.3>
Usage Example:
tf.math.polyval([2, 1, 0], 3) # evaluates 2 * (3**2) + 1 * (3**1) + 0 * (3**0)<tf.Tensor: shape=(), dtype=int32, numpy=21>
tf.math.polyval can also be used in polynomial regression. Taking
advantage of this function can facilitate writing a polynomial equation
as compared to explicitly writing it out, especially for higher degree
polynomials.
x = tf.constant(3)theta1 = tf.Variable(2)theta2 = tf.Variable(1)theta3 = tf.Variable(0)tf.math.polyval([theta1, theta2, theta3], x)<tf.Tensor: shape=(), dtype=int32, numpy=21>
| Args | |
|---|---|
| coeffs | A list of Tensorrepresenting the coefficients of the polynomial. | 
| x | A Tensorrepresenting the variable of the polynomial. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A tensorof the shape as the expression p(x) with usual broadcasting
rules for element-wise addition and multiplication applied. | 
numpy compatibility
Equivalent to numpy.polyval.