View source on GitHub
|
Optimizer that implements the Adadelta algorithm.
Inherits From: Optimizer
tf.compat.v1.train.AdadeltaOptimizer(
learning_rate=0.001,
rho=0.95,
epsilon=1e-08,
use_locking=False,
name='Adadelta'
)
Migrate to TF2
tf.compat.v1.train.AdadeltaOptimizer is compatible with eager mode and
tf.function.
When eager execution is enabled, learning_rate, rho,
and epsilon can each be a callable that
takes no arguments and returns the actual value to use. This can be useful
for changing these values across different invocations of optimizer
functions.
To switch to native TF2 style, use tf.keras.optimizers.Adadelta
instead. Please notice that due to the implementation differences,
tf.keras.optimizers.Adadelta and
tf.compat.v1.train.AdadeltaOptimizer may have slight differences in
floating point numerics even though the formula used for the variable
updates still matches.
Structural mapping to native TF2
Before:
optimizer = tf.compat.v1.train.AdadeltaOptimizer(
learning_rate=learning_rate,
rho=rho,
epsilon=epsilon)
After:
optimizer = tf.keras.optimizers.Adadelta(
learning_rate=learning_rate,
rho=rho,
epsilon=epsilon)
How to map arguments
| TF1 Arg Name | TF2 Arg Name | Note |
|---|---|---|
learning_rate
|
learning_rate
|
Be careful of setting learning_rate tensor value computed from the global step. In TF1 this was usually meant to imply a dynamic learning rate and would recompute in each step. In TF2 (eager + function) it will treat it as a scalar value that only gets computed once instead of a symbolic placeholder to be computed each time. |
rho |
rho |
- |
epsilon
|
epsilon
|
Default value is 1e-08 in TF1, but 1e-07 in TF2. |
use_locking |
- | Not applicable in TF2. |
Before & after usage example
Before:
x = tf.Variable([1,2,3], dtype=tf.float32)
grad = tf.constant([0.1, 0.2, 0.3])
optimizer = tf.compat.v1.train.AdadeltaOptimizer(learning_rate=0.001)
optimizer.apply_gradients(zip([grad], [x]))
After:
x = tf.Variable([1,2,3], dtype=tf.float32)
grad = tf.constant([0.1, 0.2, 0.3])
optimizer = tf.keras.optimizers.Adadelta(learning_rate=0.001)
optimizer.apply_gradients(zip([grad], [x]))
Description
References | |
|---|---|
| ADADELTA - An Adaptive Learning Rate Method: Zeiler, 2012 (pdf) |
Methods
apply_gradients
apply_gradients(
grads_and_vars, global_step=None, name=None
)
Apply gradients to variables.
This is the second part of minimize(). It returns an Operation that
applies gradients.
@compatibility(TF2)
How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
|---|---|---|
grads_and_vars |
grads_and_vars |
- |
global_step |
Not supported. | Use optimizer.iterations |
name |
name. |
- |
| Args | |
|---|---|
grads_and_vars
|
List of (gradient, variable) pairs as returned by
compute_gradients().
|
global_step
|
Optional Variable to increment by one after the
variables have been updated.
|
name
|
Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.
|
| Returns | |
|---|---|
An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.
|
| Raises | |
|---|---|
TypeError
|
If grads_and_vars is malformed.
|
ValueError
|
If none of the variables have gradients. |
RuntimeError
|
If you should use _distributed_apply() instead.
|
compute_gradients
compute_gradients(
loss,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None
)
Compute gradients of loss for the variables in var_list.
Migrate to TF2
tf.keras.optimizers.Optimizer in TF2 does not provide a
compute_gradients method, and you should use a tf.GradientTape to
obtain the gradients:
@tf.function
def train step(inputs):
batch_data, labels = inputs
with tf.GradientTape() as tape:
predictions = model(batch_data, training=True)
loss = tf.keras.losses.CategoricalCrossentropy(
reduction=tf.keras.losses.Reduction.NONE)(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
Args:
loss: A Tensor containing the value to minimize or a callable taking
no arguments which returns the value to minimize. When eager execution
is enabled it must be a callable.
var_list: Optional list or tuple of tf.Variable to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE_VARIABLES.
gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.
aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.
colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.
grad_loss: Optional. A Tensor holding the gradient computed for loss.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be None.
Raises:
TypeError: If var_list contains anything else than Variable objects.
ValueError: If some arguments are invalid.
RuntimeError: If called with eager execution enabled and loss is
not callable.
@compatibility(eager)
When eager execution is enabled, gate_gradients, aggregation_method,
and colocate_gradients_with_ops are ignored.
Description
This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.
get_name
get_name()
get_slot
get_slot(
var, name
)
Return a slot named name created for var by the Optimizer.
Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.
Use get_slot_names() to get the list of slot names created by the
Optimizer.
| Args | |
|---|---|
var
|
A variable passed to minimize() or apply_gradients().
|
name
|
A string. |
| Returns | |
|---|---|
The Variable for the slot if it was created, None otherwise.
|
get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer.
See get_slot().
| Returns | |
|---|---|
| A list of strings. |
minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Add operations to minimize loss by updating var_list.
This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.
| Args | |
|---|---|
loss
|
A Tensor containing the value to minimize.
|
global_step
|
Optional Variable to increment by one after the
variables have been updated.
|
var_list
|
Optional list or tuple of Variable objects to update to
minimize loss. Defaults to the list of variables collected in
the graph under the key GraphKeys.TRAINABLE_VARIABLES.
|
gate_gradients
|
How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.
|
aggregation_method
|
Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.
|
colocate_gradients_with_ops
|
If True, try colocating gradients with the corresponding op. |
name
|
Optional name for the returned operation. |
grad_loss
|
Optional. A Tensor holding the gradient computed for loss.
|
| Returns | |
|---|---|
An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.
|
| Raises | |
|---|---|
ValueError
|
If some of the variables are not Variable objects.
|
eager compatibility
When eager execution is enabled, loss should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of var_list if
not None, else with respect to any trainable variables created during the
execution of the loss function. gate_gradients, aggregation_method,
colocate_gradients_with_ops and grad_loss are ignored when eager
execution is enabled.
variables
variables()
A list of variables which encode the current state of Optimizer.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
| Returns | |
|---|---|
| A list of variables. |
Class Variables | |
|---|---|
| GATE_GRAPH |
2
|
| GATE_NONE |
0
|
| GATE_OP |
1
|
View source on GitHub