Outputs random values from a truncated normal distribution.
tf.random.truncated_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.dtypes.float32,
    seed=None,
    name=None
)
The values are drawn from a normal distribution with specified mean and
standard deviation, discarding and re-drawing any samples that are more than
two standard deviations from the mean.
Examples:
tf.random.truncated_normal(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
tf.random.truncated_normal(shape=[2], mean=3, stddev=1, dtype=tf.float32)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
| Args | 
|---|
| shape | A 1-D integer Tensor or Python array. The shape of the output tensor. | 
| mean | A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution. | 
| stddev | A 0-D Tensor or Python value of type dtype. The standard deviation
of the normal distribution, before truncation. | 
| dtype | The type of the output. Restricted to floating-point types: tf.half,tf.float,tf.double, etc. | 
| seed | A Python integer. Used to create a random seed for the distribution.
See tf.random.set_seedfor more information. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A tensor of the specified shape filled with random truncated normal values. |