tf.raw_ops.ParseExampleDataset
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Transforms input_dataset containing Example protos as vectors of DT_STRING into a dataset of Tensor or SparseTensor objects representing the parsed features.
tf.raw_ops.ParseExampleDataset(
    input_dataset,
    num_parallel_calls,
    dense_defaults,
    sparse_keys,
    dense_keys,
    sparse_types,
    dense_shapes,
    output_types,
    output_shapes,
    sloppy=False,
    ragged_keys=[],
    ragged_value_types=[],
    ragged_split_types=[],
    name=None
)
| Args | 
|---|
| input_dataset | A Tensorof typevariant. | 
| num_parallel_calls | A Tensorof typeint64. | 
| dense_defaults | A list of Tensorobjects with types from:float32,int64,string.
A dict mapping string keys toTensors.
The keys of the dict must match the dense_keys of the feature. | 
| sparse_keys | A list of strings.
A list of string keys in the examples features.
The results for these keys will be returned asSparseTensorobjects. | 
| dense_keys | A list of strings.
A list of Ndense string Tensors (scalars).
The keys expected in the Examples features associated with dense values. | 
| sparse_types | A list of tf.DTypesfrom:tf.float32, tf.int64, tf.string.
A list ofDTypesof the same length assparse_keys.
Onlytf.float32(FloatList),tf.int64(Int64List),
andtf.string(BytesList) are supported. | 
| dense_shapes | A list of shapes (each a tf.TensorShapeor list ofints).
List of tuples with the same length asdense_keys.
The shape of the data for each dense feature referenced bydense_keys.
Required for any input tensors identified bydense_keys.  Must be
either fully defined, or may contain an unknown first dimension.
An unknown first dimension means the feature is treated as having
a variable number of blocks, and the output shape along this dimension
is considered unknown at graph build time.  Padding is applied for
minibatch elements smaller than the maximum number of blocks for the
given feature along this dimension. | 
| output_types | A list of tf.DTypesthat has length>= 1.
The type list for the return values. | 
| output_shapes | A list of shapes (each a tf.TensorShapeor list ofints) that has length>= 1.
The list of shapes being produced. | 
| sloppy | An optional bool. Defaults toFalse. | 
| ragged_keys | An optional list of strings. Defaults to[]. | 
| ragged_value_types | An optional list of tf.DTypesfrom:tf.float32, tf.int64, tf.string. Defaults to[]. | 
| ragged_split_types | An optional list of tf.DTypesfrom:tf.int32, tf.int64. Defaults to[]. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensorof typevariant. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2022-10-27 UTC.
  
  
  
    
      [null,null,["Last updated 2022-10-27 UTC."],[],[]]