tf.raw_ops.QuantizedResizeBilinear
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Resize quantized images to size using quantized bilinear interpolation.
tf.raw_ops.QuantizedResizeBilinear(
    images,
    size,
    min,
    max,
    align_corners=False,
    half_pixel_centers=False,
    name=None
)
Input images and output images must be quantized types.
| Args | 
|---|
| images | A Tensor. Must be one of the following types:quint8,qint32,float32.
4-D with shape[batch, height, width, channels]. | 
| size | A 1-D int32 Tensor of 2 elements: new_height, new_width.  The
new size for the images. | 
| min | A Tensorof typefloat32. | 
| max | A Tensorof typefloat32. | 
| align_corners | An optional bool. Defaults toFalse.
If true, the centers of the 4 corner pixels of the input and output tensors are
aligned, preserving the values at the corner pixels. Defaults to false. | 
| half_pixel_centers | An optional bool. Defaults toFalse. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A tuple of Tensorobjects (resized_images, out_min, out_max). | 
| resized_images | A Tensor. Has the same type asimages. | 
| out_min | A Tensorof typefloat32. | 
| out_max | A Tensorof typefloat32. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2022-10-27 UTC.
  
  
  
    
      [null,null,["Last updated 2022-10-27 UTC."],[],[]]