Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.distribute.experimental.ParameterServerStrategy

TensorFlow 1 version View source on GitHub

An asynchronous multi-worker parameter server tf.distribute strategy.

Inherits From: Strategy

This strategy requires two roles: workers and parameter servers. Variables and updates to those variables will be assigned to parameter servers and other operations are assigned to workers.

When each worker has more than one GPU, operations will be replicated on all GPUs. Even though operations may be replicated, variables are not and each worker shares a common view for which parameter server a variable is assigned to.

By default it uses TFConfigClusterResolver to detect configurations for multi-worker training. This requires a 'TF_CONFIG' environment variable and the 'TF_CONFIG' must have a cluster spec.

This class assumes each worker is running the same code independently, but parameter servers are running a standard server. This means that while each worker will synchronously compute a single gradient update across all GPUs, updates between workers proceed asynchronously. Operations that occur only on the first replica (such as incrementing the global step), will occur on the first replica of every worker.

It is expected to call call_for_each_replica(fn, ...) for any operations which potentially can be replicated across replicas (i.e. multiple GPUs) even if there is only CPU or one GPU. When defining the fn, extra caution needs to be taken:

1) It is generally not recommended to open a device scope under the strategy's scope. A device scope (i.e. calling tf.device) will be merged with or override the device for operations but will not change the device for variables.

2) It is also not recommended to open a colocation scope (i.e. calling tf.compat.v1.colocate_with) under the strategy's scope. For colocating variables, use strategy.extended.colocate_vars_with instead. Colocation of ops will possibly create device assignment conflicts.

For Example:

strategy = tf.distribute.experimental.ParameterServerStrategy()
run_config = tf.estimator.RunConfig(
    experimental_distribute.train_distribute=strategy)
estimator = tf.estimator.Estimator(config=run_config)
tf.estimator.train_and_evaluate(estimator,...)

cluster_resolver Optional tf.distribute.cluster_resolver.ClusterResolver object. Defaults to a tf.distribute.cluster_resolver.TFConfigClusterResolver.

extended tf.distribute.StrategyExtended with additional methods.
num_replicas_in_sync Returns number of replicas over which gradients are aggregated.

Methods

experimental_assign_to_logical_device

View source

Adds annotation that tensor will be assigned to a logical device.


# Initializing TPU system with 2 logical devices and 4 replicas.
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
topology = tf.tpu.experimental.initialize_tpu_system(resolver)
device_assignment = tf.tpu.experimental.DeviceAssignment.build(
    topology,
    computation_shape=[1, 1, 2],
    num_replicas=4)
strategy = tf.distribute.experimental.TPUStrategy(
    resolver, device_assignment=device_assignment)
iterator = iter(inputs)

@tf.function()
def step_fn(inputs):
  output = tf.add(inputs, inputs)

  // Add operation will be executed on logical device 0.
  output = strategy.experimental_assign_to_logical_device(output, 0)
  return output

strategy.run(step_fn, args=(next(iterator),))

Args
tensor Input tensor to annotate.
logical_device_id Id of the logical core to which the tensor will be assigned.

Raises
ValueError The logical device id presented is not consistent with total number of partitions specified by the device assignment.

Returns
Annotated tensor with idential value as tensor.

experimental_distribute_dataset

View source

Distributes a tf.data.Dataset instance provided via dataset.

The returned distributed dataset can be iterated over similar to how regular datasets can. NOTE: Currently, the user cannot add any more transformations to a distributed dataset.

The following is an example:

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

# Iterate over the distributed dataset
for x in dist_dataset:
  # process dataset elements
  strategy.run(train_step, args=(x,))

We will assume that the input dataset is batched by the global batch size. With this assumption, we will make a best effort to divide each batch across all the replicas (one or more workers).

In a multi-worker setting, we will first attempt to distribute the dataset by attempting to detect whether the dataset is being created out of ReaderDatasets (e.g. TFRecordDataset, TextLineDataset, etc.) and if so, attempting to shard the input files. Note that there has to be at least one input file per worker. If you have less than one input file per worker, we suggest that you should disable distributing your dataset using the method below.

If that attempt is unsuccessful (e.g. the dataset is created from a Dataset.range), we will shard the dataset evenly at the end by appending a .shard operation to the end of the processing pipeline. This will cause the entire preprocessing pipeline for all the data to be run on every worker, and each worker will do redundant work. We will print a warning if this method of sharding is selected.

You can disable dataset sharding across workers using the auto_shard_policy option in tf.data.experimental.DistributeOptions.

Within each worker, we will also split the data among all the worker devices (if more than one a present), and this will happen even if multi-worker sharding is disabled using the method above.

If the above batch splitting and dataset sharding logic is undesirable, please use experimental_distribute_datasets_from_function instead, which does not do any automatic splitting or sharding.

You can also use the element_spec property of the distributed dataset returned by this API to query the tf.TypeSpec of the elements returned by the iterator. This can be used to set the input_signature property of a tf.function.

strategy = tf.distribute.MirroredStrategy()

# Create a dataset
dataset = dataset_ops.Dataset.TFRecordDataset([
  "/a/1.tfr", "/a/2.tfr", "/a/3.tfr", "/a/4.tfr"])

# Distribute that dataset
dist_dataset = strategy.experimental_distribute_dataset(dataset)

@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(inputs):
  # train model with inputs
  return

# Iterate over the distributed dataset
for x in dist_dataset:
  # process dataset elements
  strategy.run(train_step, args=(x,))

Args
dataset tf.data.Dataset that will be sharded across all replicas using the rules stated above.

Returns
A "distributed Dataset", which acts like a tf.data.Dataset except it produces "per-replica" values.

experimental_distribute_datasets_from_function

View source

Distributes tf.data.Dataset instances created by calls to dataset_fn.

dataset_fn will be called once for each worker in the strategy. Each replica on that worker will dequeue one batch of inputs from the local Dataset (i.e. if a worker has two replicas, two batches will be dequeued from the Dataset every step).

This method can be used for several purposes. For example, where experimental_distribute_dataset is unable to shard the input files, this method might be used to manually shard the dataset (avoiding the slow fallback behavior in experimental_distribute_dataset). In cases where the dataset is infinite, this sharding can be done by creating dataset replicas that differ only in their random seed. experimental_distribute_dataset may also sometimes fail to split the batch across replicas on a worker. In that case, this method can be used where that limitation does not exist.

The dataset_fn should take an tf.distribute.InputContext instance where information about batching and input replication can be accessed:

def dataset_fn(input_context):
  batch_size = input_context.get_per_replica_batch_size(global_batch_size)
  d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size)
  return d.shard(
      input_context.num_input_pipelines, input_context.input_pipeline_id)

inputs = strategy.experimental_distribute_datasets_from_function(dataset_fn)

for batch in inputs:
  replica_results = strategy.run(replica_fn, args=(batch,))

To query the tf.TypeSpec of the elements in the distributed dataset returned by this API, you need to use the element_spec property of the distributed iterator. This tf.TypeSpec can be used to set the input_signature property of a tf.function.

# If you want to specify `input_signature` for a `tf.function` you must
# first create the iterator.
iterator = iter(inputs)

@tf.function(input_signature=[iterator.element_spec])
def replica_fn_with_signature(inputs):
  # train the model with inputs
  return

for _ in range(steps):
  strategy.run(replica_fn_with_signature,
      args=(next(iterator),))

Args
dataset_fn A function taking a tf.distribute.InputContext instance and returning a tf.data.Dataset.

Returns
A "distributed Dataset", which acts like a tf.data.Dataset except it produces "per-replica" values.

experimental_distribute_values_from_function

View source

Generates tf.distribute.DistributedValues from value_fn.

This function is to generate tf.distribute.DistributedValues to pass into run, reduce, or other methods that take distributed values when not using datasets.

Args
value_fn The function to run to generate values. It is called for each replica with tf.distribute.ValueContext as the sole argument. It must return a Tensor or a type that can be converted to a Tensor.

Returns
A tf.distribute.DistributedValues containing a value for each replica.

Example usage:

  1. Return constant value per replica:
strategy = tf.distribute.MirroredStrategy()
def value_fn(ctx):
  return tf.constant(1.)
distributed_values = (
     strategy.experimental_distribute_values_from_function(
       value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(<tf.Tensor: shape=(), dtype=float32, numpy=1.0>,)
  1. Distribute values in array based on replica_id:
strategy = tf.distribute.MirroredStrategy()
array_value = np.array([3., 2., 1.])
def value_fn(ctx):
  return array_value[ctx.replica_id_in_sync_group]
distributed_values = (
     strategy.experimental_distribute_values_from_function(
       value_fn))