tf.keras.losses.hinge
Computes the hinge loss between y_true
and y_pred
.
tf.keras.losses.hinge(
y_true, y_pred
)
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)
Usage:
y_true = np.random.choice([-1, 1], size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.hinge(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(),
np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1))
Args |
y_true
|
The ground truth values. y_true values are expected to be -1 or 1.
If binary (0 or 1) labels are provided they will be converted to -1 or 1.
shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Hinge loss values. shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]