tf.keras.backend.ctc_batch_cost
Stay organized with collections
Save and categorize content based on your preferences.
Runs CTC loss algorithm on each batch element.
tf.keras.backend.ctc_batch_cost(
y_true, y_pred, input_length, label_length
)
Arguments |
y_true
|
tensor (samples, max_string_length)
containing the truth labels.
|
y_pred
|
tensor (samples, time_steps, num_categories)
containing the prediction, or output of the softmax.
|
input_length
|
tensor (samples, 1) containing the sequence length for
each batch item in y_pred .
|
label_length
|
tensor (samples, 1) containing the sequence length for
each batch item in y_true .
|
Returns |
Tensor with shape (samples,1) containing the
CTC loss of each element.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.backend.ctc_batch_cost\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/backend/ctc_batch_cost) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/backend.py#L5795-L5824) |\n\nRuns CTC loss algorithm on each batch element.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.backend.ctc_batch_cost`](/api_docs/python/tf/keras/backend/ctc_batch_cost)\n\n\u003cbr /\u003e\n\n tf.keras.backend.ctc_batch_cost(\n y_true, y_pred, input_length, label_length\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|----------------|-----------------------------------------------------------------------------------------------------|\n| `y_true` | tensor `(samples, max_string_length)` containing the truth labels. |\n| `y_pred` | tensor `(samples, time_steps, num_categories)` containing the prediction, or output of the softmax. |\n| `input_length` | tensor `(samples, 1)` containing the sequence length for each batch item in `y_pred`. |\n| `label_length` | tensor `(samples, 1)` containing the sequence length for each batch item in `y_true`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Tensor with shape (samples,1) containing the CTC loss of each element. ||\n\n\u003cbr /\u003e"]]