tf.keras.layers.InputLayer
Stay organized with collections
Save and categorize content based on your preferences.
Layer to be used as an entry point into a Network (a graph of layers).
Inherits From: Layer
tf.keras.layers.InputLayer(
input_shape=None, batch_size=None, dtype=None, input_tensor=None, sparse=False,
name=None, ragged=False, **kwargs
)
It can either wrap an existing tensor (pass an input_tensor
argument)
or create a placeholder tensor (pass arguments input_shape
, and
optionally, dtype
).
It is generally recommend to use the functional layer API via Input
,
(which creates an InputLayer
) without directly using InputLayer
.
When using InputLayer with Keras Sequential model, it can be skipped by
moving the input_shape parameter to the first layer after the InputLayer.
This class can create placeholders for tf.Tensors, tf.SparseTensors, and
tf.RaggedTensors by choosing 'sparse=True' or 'ragged=True'. Note that
'sparse' and 'ragged' can't be configured to True at same time.
Usage:
# With explicit InputLayer.
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(4,)),
tf.keras.layers.Dense(8)])
model.compile(tf.optimizers.RMSprop(0.001), loss='mse')
model.fit(np.zeros((10, 4)),
np.ones((10, 8)))
# Without InputLayer and let the first layer to have the input_shape.
# Keras will add a input for the model behind the scene.
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, input_shape=(4,))])
model.compile(tf.optimizers.RMSprop(0.001), loss='mse')
model.fit(np.zeros((10, 4)),
np.ones((10, 8)))
Arguments |
input_shape
|
Shape tuple (not including the batch axis), or TensorShape
instance (not including the batch axis).
|
batch_size
|
Optional input batch size (integer or None).
|
dtype
|
Optional datatype of the input. When not provided, the Keras
default float type will be used.
|
input_tensor
|
Optional tensor to use as layer input
instead of creating a placeholder.
|
sparse
|
Boolean, whether the placeholder created is meant to be sparse.
Default to False.
|
ragged
|
Boolean, whether the placeholder created is meant to be ragged.
In this case, values of 'None' in the 'shape' argument represent
ragged dimensions. For more information about RaggedTensors, see
https://www.tensorflow.org/guide/ragged_tensors
Default to False.
|
name
|
Optional name of the layer (string).
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.InputLayer\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/layers/InputLayer) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/engine/input_layer.py#L34-L191) |\n\nLayer to be used as an entry point into a Network (a graph of layers).\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.InputLayer`](/api_docs/python/tf/keras/layers/InputLayer)\n\n\u003cbr /\u003e\n\n tf.keras.layers.InputLayer(\n input_shape=None, batch_size=None, dtype=None, input_tensor=None, sparse=False,\n name=None, ragged=False, **kwargs\n )\n\nIt can either wrap an existing tensor (pass an `input_tensor` argument)\nor create a placeholder tensor (pass arguments `input_shape`, and\noptionally, `dtype`).\n\nIt is generally recommend to use the functional layer API via `Input`,\n(which creates an `InputLayer`) without directly using `InputLayer`.\n\nWhen using InputLayer with Keras Sequential model, it can be skipped by\nmoving the input_shape parameter to the first layer after the InputLayer.\n\nThis class can create placeholders for tf.Tensors, tf.SparseTensors, and\ntf.RaggedTensors by choosing 'sparse=True' or 'ragged=True'. Note that\n'sparse' and 'ragged' can't be configured to True at same time.\nUsage: \n\n # With explicit InputLayer.\n model = tf.keras.Sequential([\n tf.keras.layers.InputLayer(input_shape=(4,)),\n tf.keras.layers.Dense(8)])\n model.compile(tf.optimizers.RMSprop(0.001), loss='mse')\n model.fit(np.zeros((10, 4)),\n np.ones((10, 8)))\n\n # Without InputLayer and let the first layer to have the input_shape.\n # Keras will add a input for the model behind the scene.\n model = tf.keras.Sequential([\n tf.keras.layers.Dense(8, input_shape=(4,))])\n model.compile(tf.optimizers.RMSprop(0.001), loss='mse')\n model.fit(np.zeros((10, 4)),\n np.ones((10, 8)))\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input_shape` | Shape tuple (not including the batch axis), or `TensorShape` instance (not including the batch axis). |\n| `batch_size` | Optional input batch size (integer or None). |\n| `dtype` | Optional datatype of the input. When not provided, the Keras default float type will be used. |\n| `input_tensor` | Optional tensor to use as layer input instead of creating a placeholder. |\n| `sparse` | Boolean, whether the placeholder created is meant to be sparse. Default to False. |\n| `ragged` | Boolean, whether the placeholder created is meant to be ragged. In this case, values of 'None' in the 'shape' argument represent ragged dimensions. For more information about RaggedTensors, see \u003chttps://www.tensorflow.org/guide/ragged_tensors\u003e Default to False. |\n| `name` | Optional name of the layer (string). |\n\n\u003cbr /\u003e"]]