tf.keras.layers.Reshape
Stay organized with collections
Save and categorize content based on your preferences.
Layer that reshapes inputs into the given shape.
Inherits From: Layer
tf.keras.layers.Reshape(
target_shape, **kwargs
)
Arbitrary, although all dimensions in the input shape must be known/fixed.
Use the keyword argument input_shape
(tuple of integers, does not include
the samples/batch size axis) when using this layer as the first layer
in a model.
Output shape:
(batch_size,) + target_shape
Example:
# as first layer in a Sequential model
model = tf.keras.Sequential()
model.add(tf.keras.layers.Reshape((3, 4), input_shape=(12,)))
# model.output_shape == (None, 3, 4), `None` is the batch size.
model.output_shape
(None, 3, 4)
# as intermediate layer in a Sequential model
model.add(tf.keras.layers.Reshape((6, 2)))
model.output_shape
(None, 6, 2)
# also supports shape inference using `-1` as dimension
model.add(tf.keras.layers.Reshape((-1, 2, 2)))
model.output_shape
(None, None, 2, 2)
Args |
target_shape
|
Target shape. Tuple of integers, does not include the
samples dimension (batch size).
|
**kwargs
|
Any additional layer keyword arguments.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.Reshape\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/layers/Reshape) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/keras/layers/core.py#L432-L536) |\n\nLayer that reshapes inputs into the given shape.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.Reshape`](/api_docs/python/tf/keras/layers/Reshape)\n\n\u003cbr /\u003e\n\n tf.keras.layers.Reshape(\n target_shape, **kwargs\n )\n\n#### Input shape:\n\nArbitrary, although all dimensions in the input shape must be known/fixed.\nUse the keyword argument `input_shape` (tuple of integers, does not include\nthe samples/batch size axis) when using this layer as the first layer\nin a model.\n\n#### Output shape:\n\n`(batch_size,) + target_shape`\n\n#### Example:\n\n # as first layer in a Sequential model\n model = tf.keras.Sequential()\n model.add(tf.keras.layers.Reshape((3, 4), input_shape=(12,)))\n # model.output_shape == (None, 3, 4), `None` is the batch size.\n model.output_shape\n (None, 3, 4)\n\n # as intermediate layer in a Sequential model\n model.add(tf.keras.layers.Reshape((6, 2)))\n model.output_shape\n (None, 6, 2)\n\n # also supports shape inference using `-1` as dimension\n model.add(tf.keras.layers.Reshape((-1, 2, 2)))\n model.output_shape\n (None, None, 2, 2)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|---------------------------------------------------------------------------------------|\n| `target_shape` | Target shape. Tuple of integers, does not include the samples dimension (batch size). |\n| `**kwargs` | Any additional layer keyword arguments. |\n\n\u003cbr /\u003e"]]