View source on GitHub
|
Base class for PreprocessingLayers.
Inherits From: Layer
tf.keras.layers.experimental.preprocessing.PreprocessingLayer(
trainable=True, name=None, dtype=None, dynamic=False, **kwargs
)
Methods
adapt
@abc.abstractmethodadapt( data, reset_state=True )
Fits the state of the preprocessing layer to the data being passed.
| Arguments | |
|---|---|
data
|
The data to train on. It can be passed either as a tf.data Dataset, or as a numpy array. |
reset_state
|
Optional argument specifying whether to clear the state of
the layer at the start of the call to adapt, or whether to start
from the existing state. This argument may not be relevant to all
preprocessing layers: a subclass of PreprocessingLayer may choose to
throw if 'reset_state' is set to False.
|
View source on GitHub