Computes the mean of absolute difference between labels and predictions.
tf.keras.losses.MeanAbsoluteError(
    reduction=losses_utils.ReductionV2.AUTO, name='mean_absolute_error'
)
loss = abs(y_true - y_pred)
Usage:
y_true = [[0., 1.], [0., 0.]]
y_pred = [[1., 1.], [1., 0.]]
# Using 'auto'/'sum_over_batch_size' reduction type.
mae = tf.keras.losses.MeanAbsoluteError()
mae(y_true, y_pred).numpy()
0.5
# Calling with 'sample_weight'.
mae(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy()
0.25
# Using 'sum' reduction type.
mae = tf.keras.losses.MeanAbsoluteError(
    reduction=tf.keras.losses.Reduction.SUM)
mae(y_true, y_pred).numpy()
1.0
# Using 'none' reduction type.
mae = tf.keras.losses.MeanAbsoluteError(
    reduction=tf.keras.losses.Reduction.NONE)
mae(y_true, y_pred).numpy()
array([0.5, 0.5], dtype=float32)
Usage with the compile API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.MeanAbsoluteError())
| Args | 
|---|
| reduction | (Optional) Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.kerascompileandfit, usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial
for more details. | 
| name | Optional name for the op. Defaults to 'mean_absolute_error'. | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates a Loss from its config (output of get_config()).
| Args | 
|---|
| config | Output of get_config(). | 
get_config
View source
get_config()
Returns the config dictionary for a Loss instance.
__call__
View source
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | 
|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the total loss for each sample of the batch is
rescaled by the corresponding element in thesample_weightvector. If
the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be
broadcasted to this shape), then each loss element ofy_predis scaled
by the corresponding value ofsample_weight. (Note ondN-1: all loss
functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | 
|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | 
|---|
| ValueError | If the shape of sample_weightis invalid. |