TensorFlow 1 version
|
View source on GitHub
|
Computes the maximum of elements across dimensions of a tensor.
tf.math.reduce_max(
input_tensor, axis=None, keepdims=False, name=None
)
Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
entry in axis. If keepdims is true, the reduced dimensions
are retained with length 1.
If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.
Usage example:
x = tf.constant([5, 1, 2, 4])print(tf.reduce_max(x))tf.Tensor(5, shape=(), dtype=int32)x = tf.constant([-5, -1, -2, -4])print(tf.reduce_max(x))tf.Tensor(-1, shape=(), dtype=int32)x = tf.constant([4, float('nan')])print(tf.reduce_max(x))tf.Tensor(4.0, shape=(), dtype=float32)x = tf.constant([float('nan'), float('nan')])print(tf.reduce_max(x))tf.Tensor(-inf, shape=(), dtype=float32)x = tf.constant([float('-inf'), float('inf')])print(tf.reduce_max(x))tf.Tensor(inf, shape=(), dtype=float32)
See the numpy docs for np.amax and np.nanmax behavior.
Args | |
|---|---|
input_tensor
|
The tensor to reduce. Should have real numeric type. |
axis
|
The dimensions to reduce. If None (the default), reduces all
dimensions. Must be in the range [-rank(input_tensor),
rank(input_tensor)).
|
keepdims
|
If true, retains reduced dimensions with length 1. |
name
|
A name for the operation (optional). |
Returns | |
|---|---|
| The reduced tensor. |
TensorFlow 1 version
View source on GitHub