View source on GitHub
|
Returns an index lookup table based on the given dataset.
tf.data.experimental.index_table_from_dataset(
dataset=None,
num_oov_buckets=0,
vocab_size=None,
default_value=-1,
hasher_spec=lookup_ops.FastHashSpec,
key_dtype=tf.dtypes.string,
name=None
)
This operation constructs a lookup table based on the given dataset of keys.
Any lookup of an out-of-vocabulary token will return a bucket ID based on its
hash if num_oov_buckets is greater than zero. Otherwise it is assigned the
default_value.
The bucket ID range is
[vocabulary size, vocabulary size + num_oov_buckets - 1].
Sample Usages:
ds = tf.data.Dataset.range(100).map(lambda x: tf.strings.as_string(x * 2))table = tf.data.experimental.index_table_from_dataset(ds, key_dtype=dtypes.int64)table.lookup(tf.constant(['0', '2', '4'], dtype=tf.string)).numpy()array([0, 1, 2])
Returns | |
|---|---|
| The lookup table based on the given dataset. |
Raises | |
|---|---|
ValueError
|
If
|
View source on GitHub