|  View source on GitHub | 
Configuration for parsing a sparse input feature from an Example.
tf.io.SparseFeature(
    index_key, value_key, dtype, size, already_sorted=False
)
Note, preferably use VarLenFeature (possibly in combination with a
SequenceExample) in order to parse out SparseTensors instead of
SparseFeature due to its simplicity.
Closely mimicking the SparseTensor that will be obtained by parsing an
Example with a SparseFeature config, a SparseFeature contains a
- value_key: The name of key for a- Featurein the- Examplewhose parsed- Tensorwill be the resulting- SparseTensor.values.
- index_key: A list of names - one for each dimension in the resulting- SparseTensorwhose- indices[i][dim]indicating the position of the- i-th value in the- dimdimension will be equal to the- i-th value in the Feature with key named- index_key[dim]in the- Example.
- size: A list of ints for the resulting- SparseTensor.dense_shape.
For example, we can represent the following 2D SparseTensor
SparseTensor(indices=[[3, 1], [20, 0]],
             values=[0.5, -1.0]
             dense_shape=[100, 3])
with an Example input proto
features {
  feature { key: "val" value { float_list { value: [ 0.5, -1.0 ] } } }
  feature { key: "ix0" value { int64_list { value: [ 3, 20 ] } } }
  feature { key: "ix1" value { int64_list { value: [ 1, 0 ] } } }
}
and SparseFeature config with 2 index_keys
SparseFeature(index_key=["ix0", "ix1"],
              value_key="val",
              dtype=tf.float32,
              size=[100, 3])