View source on GitHub
|
Configuration for parsing a sparse input feature from an Example.
tf.io.SparseFeature(
index_key, value_key, dtype, size, already_sorted=False
)
Note, preferably use VarLenFeature (possibly in combination with a
SequenceExample) in order to parse out SparseTensors instead of
SparseFeature due to its simplicity.
Closely mimicking the SparseTensor that will be obtained by parsing an
Example with a SparseFeature config, a SparseFeature contains a
value_key: The name of key for aFeaturein theExamplewhose parsedTensorwill be the resultingSparseTensor.values.index_key: A list of names - one for each dimension in the resultingSparseTensorwhoseindices[i][dim]indicating the position of thei-th value in thedimdimension will be equal to thei-th value in the Feature with key namedindex_key[dim]in theExample.size: A list of ints for the resultingSparseTensor.dense_shape.
For example, we can represent the following 2D SparseTensor
SparseTensor(indices=[[3, 1], [20, 0]],
values=[0.5, -1.0]
dense_shape=[100, 3])
with an Example input proto
features {
feature { key: "val" value { float_list { value: [ 0.5, -1.0 ] } } }
feature { key: "ix0" value { int64_list { value: [ 3, 20 ] } } }
feature { key: "ix1" value { int64_list { value: [ 1, 0 ] } } }
}
and SparseFeature config with 2 index_keys
SparseFeature(index_key=["ix0", "ix1"],
value_key="val",
dtype=tf.float32,
size=[100, 3])
View source on GitHub