Creates a dataset that shards the input dataset.
tf.raw_ops.ExperimentalAutoShardDataset(
    input_dataset,
    num_workers,
    index,
    output_types,
    output_shapes,
    auto_shard_policy=0,
    name=None
)
Creates a dataset that shards the input dataset by num_workers, returning a sharded dataset for the index-th worker. This attempts to automatically shard a dataset by examining the Dataset graph and inserting a shard op before the inputs to a reader Dataset (e.g. CSVDataset, TFRecordDataset).
This dataset will throw a NotFound error if we cannot shard the dataset automatically.
| Args | |
|---|---|
| input_dataset | A Tensorof typevariant.
A variant tensor representing the input dataset. | 
| num_workers | A Tensorof typeint64.
A scalar representing the number of workers to distribute this dataset across. | 
| index | A Tensorof typeint64.
A scalar representing the index of the current worker out of num_workers. | 
| output_types | A list of tf.DTypesthat has length>= 1. | 
| output_shapes | A list of shapes (each a tf.TensorShapeor list ofints) that has length>= 1. | 
| auto_shard_policy | An optional int. Defaults to0. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typevariant. |