Generates a feature cross from a list of tensors, and returns it as a
tf.raw_ops.RaggedCross(
    ragged_values,
    ragged_row_splits,
    sparse_indices,
    sparse_values,
    sparse_shape,
    dense_inputs,
    input_order,
    hashed_output,
    num_buckets,
    hash_key,
    out_values_type,
    out_row_splits_type,
    name=None
)
RaggedTensor.  See tf.ragged.cross for more details.
Args:
    ragged_values: A list of Tensor objects with types from: int64, string.
      The values tensor for each RaggedTensor input.
    ragged_row_splits: A list of Tensor objects with types from: int32, int64.
      The row_splits tensor for each RaggedTensor input.
    sparse_indices: A list of Tensor objects with type int64.
      The indices tensor for each SparseTensor input.
    sparse_values: A list of Tensor objects with types from: int64, string.
      The values tensor for each SparseTensor input.
    sparse_shape: A list with the same length as sparse_indices of Tensor objects with type int64.
      The dense_shape tensor for each SparseTensor input.
    dense_inputs: A list of Tensor objects with types from: int64, string.
      The tf.Tensor inputs.
    input_order: A string.
      String specifying the tensor type for each input.  The ith character in
      this string specifies the type of the ith input, and is one of: 'R' (ragged),
      'D' (dense), or 'S' (sparse).  This attr is used to ensure that the crossed
      values are combined in the order of the inputs from the call to tf.ragged.cross.
    hashed_output: A bool.
    num_buckets: An int that is >= 0.
    hash_key: An int.
    out_values_type: A tf.DType from: tf.int64, tf.string.
    out_row_splits_type: A tf.DType from: tf.int32, tf.int64.
    name: A name for the operation (optional).
Returns:
    A tuple of Tensor objects (output_values, output_row_splits).
output_values: A `Tensor` of type `out_values_type`.
output_row_splits: A `Tensor` of type `out_row_splits_type`.