Applies upper_bound(sorted_search_values, values) along each row.
tf.raw_ops.UpperBound(
    sorted_inputs,
    values,
    out_type=tf.dtypes.int32,
    name=None
)
Each set of rows with the same index in (sorted_inputs, values) is treated
independently.  The resulting row is the equivalent of calling
np.searchsorted(sorted_inputs, values, side='right').
The result is not a global index to the entire
Tensor, but rather just the index in the last dimension.
A 2-D example: sorted_sequence = [[0, 3, 9, 9, 10], [1, 2, 3, 4, 5]] values = [[2, 4, 9], [0, 2, 6]]
result = UpperBound(sorted_sequence, values)
result == [[1, 2, 4], [0, 2, 5]]
| Args | |
|---|---|
| sorted_inputs | A Tensor. 2-D Tensor where each row is ordered. | 
| values | A Tensor. Must have the same type assorted_inputs.
2-D Tensor with the same numbers of rows assorted_search_values. Contains
the values that will be searched for insorted_search_values. | 
| out_type | An optional tf.DTypefrom:tf.int32, tf.int64. Defaults totf.int32. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typeout_type. |