সতর্কতা: প্রতিস্থাপন স্থিতিশীল হওয়ার পরে এই API টি অবচয় করা হয়েছে এবং টেনসরফ্লোয়ের ভবিষ্যতের সংস্করণে সরানো হবে।

DynamicStitch

পাবলিক চূড়ান্ত বর্গ DynamicStitch

একটি একক টেনসরে `ডেটা` টেনসর থেকে মানগুলিকে ইন্টারলিভ করুন।

মার্জ করা টেন্সর যেমন যে তৈরী করে

merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...]
 
উদাহরণস্বরূপ, যদি প্রতিটি `সূচকের [M]` স্কালে বা ভেক্টর, আমরা আছে
# Scalar indices:
     merged[indices[m], ...] = data[m][...]
 
     # Vector indices:
     merged[indices[m][i], ...] = data[m][i, ...]
 
প্রতিটি `ডেটা [আমি] .shape` সংশ্লিষ্ট` সূচকের [আমি] দিয়ে শুরু হবে। shape`, এবং বাকি `data[i].shape` অবশ্যই ধ্রুবক wrt `i` হতে হবে। অর্থাৎ, আমাদের অবশ্যই `data[i].shape = indices[i].shape + constant` থাকতে হবে। এই `ধ্রুবক` এর পরিপ্রেক্ষিতে, আউটপুট আকৃতি

merged.shape = [max(সূচক)] + ধ্রুবক

মানগুলিকে ক্রমানুসারে মার্জ করা হয়, তাই যদি `(m,i) < (n,j)` স্লাইস `ডেটা'র জন্য `সূচক[m][i]` এবং `সূচক[n][j]` উভয় ক্ষেত্রেই কোনো সূচক দেখা যায় [n][j]` মার্জ করা ফলাফলে প্রদর্শিত হবে। আপনার যদি এই গ্যারান্টির প্রয়োজন না হয়, তাহলে কিছু ডিভাইসে ParallelDynamicStitch আরও ভালো পারফর্ম করতে পারে।

উদাহরণস্বরূপ:

indices[0] = 6
     indices[1] = [4, 1]
     indices[2] = [[5, 2], [0, 3]]
     data[0] = [61, 62]
     data[1] = [[41, 42], [11, 12]]
     data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]]
     merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42],
               [51, 52], [61, 62]]
 
করে যা নিম্নলিখিত উদাহরণে উপর সচিত্র এই পদ্ধতি `dynamic_partition` দ্বারা নির্মিত একত্রীকরণ পার্টিশন ব্যবহার করা যেতে পারে:
# Apply function (increments x_i) on elements for which a certain condition
     # apply (x_i != -1 in this example).
     x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4])
     condition_mask=tf.not_equal(x,tf.constant(-1.))
     partitioned_data = tf.dynamic_partition(
         x, tf.cast(condition_mask, tf.int32) , 2)
     partitioned_data[1] = partitioned_data[1] + 1.0
     condition_indices = tf.dynamic_partition(
         tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2)
     x = tf.dynamic_stitch(condition_indices, partitioned_data)
     # Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain
     # unchanged.
 

পাবলিক পদ্ধতি

আউটপুট <টি>
asOutput ()
একটি টেনসরের প্রতীকী হ্যান্ডেল প্রদান করে।
স্ট্যাটিক <টি> DynamicStitch <টি>
তৈরি ( ব্যাপ্তি সুযোগ Iterable < প্রতীক <integer >> সূচকের, Iterable < প্রতীক <টি >> ডেটা)
একটি নতুন ডায়নামিক স্টিচ অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।
আউটপুট <টি>

উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি

পাবলিক পদ্ধতি

পাবলিক আউটপুট <টি> asOutput ()

একটি টেনসরের প্রতীকী হ্যান্ডেল প্রদান করে।

TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি সিম্বলিক হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনার প্রতিনিধিত্ব করে।

পাবলিক স্ট্যাটিক DynamicStitch <টি> তৈরি করুন ( ব্যাপ্তি সুযোগ Iterable < প্রতীক <integer >> সূচকের, Iterable < প্রতীক <টি >> ডেটা)

একটি নতুন ডায়নামিক স্টিচ অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।

পরামিতি
সুযোগ বর্তমান সুযোগ
রিটার্নস
  • ডায়নামিক স্টিচের একটি নতুন উদাহরণ

পাবলিক আউটপুট <টি> মার্জ ()