SparseApplyAdagradV2

পাবলিক ফাইনাল ক্লাস SparseApplyAdagradV2

adagrad স্কিম অনুযায়ী '*var' এবং '*accum'-এ প্রাসঙ্গিক এন্ট্রি আপডেট করুন।

যে সারিগুলির জন্য আমাদের গ্রেড আছে, আমরা var আপডেট করি এবং নিম্নরূপ জমা করি: $$accum += grad * grad$$$$var -= lr * grad * (1 / sqrt(accum))$$

নেস্টেড ক্লাস

ক্লাস SparseApplyAdagradV2.Options SparseApplyAdagradV2 এর জন্য ঐচ্ছিক বৈশিষ্ট্য

পাবলিক পদ্ধতি

আউটপুট <T>
আউটপুট হিসাবে ()
একটি টেনসরের প্রতীকী হ্যান্ডেল প্রদান করে।
static <T, U প্রসারিত সংখ্যা> SparseApplyAdagradV2 <T>
তৈরি করুন ( স্কোপ স্কোপ, Operand <T> var, Operand <T> accum, Operand <T> lr, Operand <T> epsilon, Operand <T> grad, Operand <U> সূচক, বিকল্প... বিকল্প)
একটি নতুন SparseApplyAdagradV2 অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।
আউটপুট <T>
আউট ()
"var" এর মতোই।
স্ট্যাটিক SparseApplyAdagradV2.Options
আপডেট স্লট (বুলিয়ান আপডেট স্লট)
স্ট্যাটিক SparseApplyAdagradV2.Options
ইউজ লকিং (বুলিয়ান ইউজ লকিং)

উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি

পাবলিক পদ্ধতি

সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()

একটি টেনসরের প্রতীকী হ্যান্ডেল প্রদান করে।

TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি প্রতীকী হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনাকে প্রতিনিধিত্ব করে।

পাবলিক স্ট্যাটিক SparseApplyAdagradV2 <T> তৈরি করুন ( স্কোপ স্কোপ, Operand <T> var, Operand <T> accum, Operand <T> lr, Operand <T> epsilon, Operand <T> grad, Operand <U> সূচক, বিকল্প.. বিকল্প )

একটি নতুন SparseApplyAdagradV2 অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।

পরামিতি
সুযোগ বর্তমান সুযোগ
var একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
accum একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
lr শেখার হার। একটি স্কেলার হতে হবে।
epsilon ধ্রুবক ফ্যাক্টর। একটি স্কেলার হতে হবে।
স্নাতক গ্রেডিয়েন্ট।
সূচক var এবং accum-এর প্রথম মাত্রায় সূচকগুলির একটি ভেক্টর।
বিকল্প ঐচ্ছিক বৈশিষ্ট্য মান বহন করে
রিটার্নস
  • SparseApplyAdagradV2 এর একটি নতুন উদাহরণ

সর্বজনীন আউটপুট <T> আউট ()

"var" এর মতোই।

পাবলিক স্ট্যাটিক SparseApplyAdagradV2.Options আপডেট স্লট (বুলিয়ান আপডেট স্লট)

পাবলিক স্ট্যাটিক SparseApplyAdagradV2. অপশন ইউজ লকিং (বুলিয়ান ইউজ লকিং)

পরামিতি
লকিং ব্যবহার করুন যদি `True` হয়, var এবং accum tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে।